To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an impr...To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an improved artificial bee colony algorithm without derivative and the bootstrap method to estimate the parameters and evaluate the accuracy of MAM error model.The improved artificial bee colony algorithm can update individuals in multiple dimensions and improve the cooperation ability between individuals by constructing a new search equation based on the idea of quasi-affine transformation.The experimental results show that based on the weighted least squares criterion,the algorithm can get the results consistent with the weighted least squares method without multiple formula derivation.The parameter estimation and accuracy evaluation method based on the bootstrap method can get better parameter estimation and more reasonable accuracy information than existing methods,which provides a new idea for the theory of parameter estimation and accuracy evaluation of the MAM error model.展开更多
During environment testing, the estimation of random vibration signals (RVS) is an important technique for the airborne platform safety and reliability. However, the available meth- ods including extreme value envel...During environment testing, the estimation of random vibration signals (RVS) is an important technique for the airborne platform safety and reliability. However, the available meth- ods including extreme value envelope method (EVEM), statistical tolerances method (STM) and improved statistical tolerance method (ISTM) require large samples and typical probability distri- bution. Moreover, the frequency-varying characteristic of RVS is usually not taken into account. Gray bootstrap method (GBM) is proposed to solve the problem of estimating frequency-varying RVS with small samples. Firstly, the estimated indexes are obtained including the estimated inter- val, the estimated uncertainty, the estimated value, the estimated error and estimated reliability. In addition, GBM is applied to estimating the single flight testing of certain aircraft. At last, in order to evaluate the estimated performance, GBM is compared with bootstrap method (BM) and gray method (GM) in testing analysis. The result shows that GBM has superiority for estimating dynamic signals with small samples and estimated reliability is proved to be 100% at the given confidence level.展开更多
Aiming at the adverse effect caused by observation noise on system state estimation precision,a novel distributed cubature Kalman filter(CKF) based on observation bootstrap sampling is proposed.Firstly,combining with ...Aiming at the adverse effect caused by observation noise on system state estimation precision,a novel distributed cubature Kalman filter(CKF) based on observation bootstrap sampling is proposed.Firstly,combining with the extraction and utilization of the latest observation information and the prior statistical information from observation noise modeling,an observation bootstrap sampling strategy is designed.The objective is to deal with the adverse influence of observation uncertainty by increasing observations information.Secondly,the strategy is dynamically introduced into the cubature Kalman filter,and the distributed fusion framework of filtering realization is constructed.Better filtering precision is obtained by promoting observation reliability without increasing the hardware cost of observation system.Theory analysis and simulation results show the proposed algorithm feasibility and effectiveness.展开更多
We design monitoring procedures for the common change-point in a sequential panel data model. An asymptotic method and two new bootstrap methods are proposed to obtain critical values. We establish the asymptotic vali...We design monitoring procedures for the common change-point in a sequential panel data model. An asymptotic method and two new bootstrap methods are proposed to obtain critical values. We establish the asymptotic validity of the proposed bootstrap procedures. In simulation studies the empirical test size and the empirical test power values are investigated to show that the three tests are valid and have their own applications.At the same time, the estimations of an unknown change-point are obtained by using the proposed test statistic with these three methods.展开更多
In this paper, the author studies the asymptotic accuracies of the one-term Edgeworth expansions and the bootstrap approximation for the studentized MLE from randomly censored exponential population. It is shown that ...In this paper, the author studies the asymptotic accuracies of the one-term Edgeworth expansions and the bootstrap approximation for the studentized MLE from randomly censored exponential population. It is shown that the Edgeworth expansions and the bootstrap approaimation are asymptotically close to the exact distribution of the studentized MLE with a rate.展开更多
基金supported by the National Natural Science Foundation of China(No.42174011 and No.41874001).
文摘To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an improved artificial bee colony algorithm without derivative and the bootstrap method to estimate the parameters and evaluate the accuracy of MAM error model.The improved artificial bee colony algorithm can update individuals in multiple dimensions and improve the cooperation ability between individuals by constructing a new search equation based on the idea of quasi-affine transformation.The experimental results show that based on the weighted least squares criterion,the algorithm can get the results consistent with the weighted least squares method without multiple formula derivation.The parameter estimation and accuracy evaluation method based on the bootstrap method can get better parameter estimation and more reasonable accuracy information than existing methods,which provides a new idea for the theory of parameter estimation and accuracy evaluation of the MAM error model.
基金supported by Aviation Science Foundation of China (No. 20100251006)the Technological Foundation Project (No. J132012C001)
文摘During environment testing, the estimation of random vibration signals (RVS) is an important technique for the airborne platform safety and reliability. However, the available meth- ods including extreme value envelope method (EVEM), statistical tolerances method (STM) and improved statistical tolerance method (ISTM) require large samples and typical probability distri- bution. Moreover, the frequency-varying characteristic of RVS is usually not taken into account. Gray bootstrap method (GBM) is proposed to solve the problem of estimating frequency-varying RVS with small samples. Firstly, the estimated indexes are obtained including the estimated inter- val, the estimated uncertainty, the estimated value, the estimated error and estimated reliability. In addition, GBM is applied to estimating the single flight testing of certain aircraft. At last, in order to evaluate the estimated performance, GBM is compared with bootstrap method (BM) and gray method (GM) in testing analysis. The result shows that GBM has superiority for estimating dynamic signals with small samples and estimated reliability is proved to be 100% at the given confidence level.
基金Supported by the National Natural Science Foundation of China(No.61300214)the Science and Technology Innovation Team Support Plan of Education Department of Henan Province(13IRTSTHN021)+1 种基金the Post-doctoral Science Foundation of China(No.2014M551999)the Funding Scheme of Young Key Teacher of Henan Province Universities(No.2013GGJS-026)
文摘Aiming at the adverse effect caused by observation noise on system state estimation precision,a novel distributed cubature Kalman filter(CKF) based on observation bootstrap sampling is proposed.Firstly,combining with the extraction and utilization of the latest observation information and the prior statistical information from observation noise modeling,an observation bootstrap sampling strategy is designed.The objective is to deal with the adverse influence of observation uncertainty by increasing observations information.Secondly,the strategy is dynamically introduced into the cubature Kalman filter,and the distributed fusion framework of filtering realization is constructed.Better filtering precision is obtained by promoting observation reliability without increasing the hardware cost of observation system.Theory analysis and simulation results show the proposed algorithm feasibility and effectiveness.
基金Supported by Doctoral Fund of Huaqiao University(600005-Z17Y0078,605-50Y17078)Promotion Program for Young and Middle-Aged Teacher in Science and Technology Research of Huaqiao University(ZQN-YX401)
文摘We design monitoring procedures for the common change-point in a sequential panel data model. An asymptotic method and two new bootstrap methods are proposed to obtain critical values. We establish the asymptotic validity of the proposed bootstrap procedures. In simulation studies the empirical test size and the empirical test power values are investigated to show that the three tests are valid and have their own applications.At the same time, the estimations of an unknown change-point are obtained by using the proposed test statistic with these three methods.
文摘In this paper, the author studies the asymptotic accuracies of the one-term Edgeworth expansions and the bootstrap approximation for the studentized MLE from randomly censored exponential population. It is shown that the Edgeworth expansions and the bootstrap approaimation are asymptotically close to the exact distribution of the studentized MLE with a rate.