期刊文献+
共找到1,763篇文章
< 1 2 89 >
每页显示 20 50 100
Interrelation between compressibility and permeability of reconstituted sandy clays with different sand fractions
1
作者 Mengying Gao Junjun Ni Zhenshun Hong 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2461-2473,共13页
It has been well recognized that sand particles significantly affect the mechanical properties of reconstituted sandy clays,including the hosted clay and sand particles.However,interrelation between the permeability a... It has been well recognized that sand particles significantly affect the mechanical properties of reconstituted sandy clays,including the hosted clay and sand particles.However,interrelation between the permeability and compressibility of reconstituted sandy clays by considering the structural effects of sand particles is still rarely reported.For this,a series of consolidation-permeability coefficient tests were conducted on reconstituted sandy clays with different sand fractions(ψ_(ss)),initial void ratio of hosted clays(e_(c0))and void ratio at liquid limit of hosted clays(e_(cL)).The roles of ψ_(ss) in both the relationships of permeability coefficient of hosted clay(k_(v-hosted clay))versus effective vertical stress(σ'_(v))and void ratio of hosted clay(e_(c-hosted clay))versus σ'_(v) were analyzed.The results show that the permeability coefficient of reconstituted sandy clays(k_(v))is dominated by hosted clay(k_(v)=k_(v-hosted clay)).Both ψ_(ss) and σ'_(v) affect the k_(v) of sandy clays by changing the e_(c-hosted clay) at any given σ'_(v).Due to the partial contacts and densified clay bridges between the sand particles(i.e.structure effects),the e_(c-hosted clay) in sandy clays is higher than that in clays at the same σ'_(v)v.The k_(v)-e_(c-hosted clay) relationship of sandy clays is independent of σ'_(v) and ψ_(ss)but is a function of e_(cL).The types of hosted clays affect the k_(v) of sandy clays by changing the e_(cL).Based on the relationship between permeability coefficient and void ratio for the reconstituted clays,an empirical method for determining the k_(v) is proposed and validated for sandy clays.The predicted values are almost consistent with the measured values with k_(v-predicted)=k_(v-measured)=0.6-2.5. 展开更多
关键词 Reconstituted clays Sand fractions Sandy clays Consolidation-permeability coefficient tests Void ratio of hosted clay permeability coefficient
在线阅读 下载PDF
Experimental Investigation into the Impact of a Viscosity Reducer on the Crude Oil Recovery Rate in a Low-Permeability Reservoir
2
作者 Baoyu Chen Meina Li +4 位作者 Jicheng Zhang Wenguo Ma YueqiWang Tianchen Pan Xuan Liu 《Fluid Dynamics & Materials Processing》 2025年第6期1459-1471,共13页
The relative permeability of oil and water is a key factor in assessing the production performance of a reservoir.This study analyzed the impact of injecting a viscosity reducer solution into low-viscosity crude oil t... The relative permeability of oil and water is a key factor in assessing the production performance of a reservoir.This study analyzed the impact of injecting a viscosity reducer solution into low-viscosity crude oil to enhance fluid flow within a low-permeability reservoir.At 72°C,the oil-water dispersion solution achieved a viscosity reduction rate(f)of 92.42%,formulated with a viscosity reducer agent concentration(C_(VR))of 0.1%and an oil-water ratio of 5:5.The interfacial tension between the viscosity reducer solution and the crude oil remained stable at approximately 1.0 mN/m across different concentrations,with the minimum value of 4.07×10^(-1)mN/m recorded at a C_(VR)of 0.2%.As the CVR increased,the relative permeability curve of the oil phase gradually decreased while the oil-water two-phase region(Ro-wtp)expanded significantly.At a C_(VR)of 0.1%,the R_(o-wtp)peaked,making an increase of 7.93 percentage points compared to water flooding.In addition,the final displacement efficiency(E_(R),final)achieved with a 0.1%viscosity reducer solution reached 48.64%,exceeding water flooding by 15.46 percentage points,highlighting the effectiveness of the viscosity reducer solution in enhancing oil recovery. 展开更多
关键词 Low-permeability reservoir low-viscosity crude oil viscosity reducer relative permeability oil displace-ment efficiency
在线阅读 下载PDF
Quantitative characterization of permeability heterogeneity of tight-sand reservoirs using nano-CT technology:A case study of the Yanchang Formation,Ordos Basin 被引量:2
3
作者 Junlong Liu Xiangchun Zhang 《Energy Geoscience》 2025年第2期302-307,共6页
The physical properties of hydrocarbon reservoirs are important factors affecting the percolation ability of the reservoirs.Tight-sand reservoirs exhibit complex pore throat connectivity due to the extensive developme... The physical properties of hydrocarbon reservoirs are important factors affecting the percolation ability of the reservoirs.Tight-sand reservoirs exhibit complex pore throat connectivity due to the extensive development of micro-and nano-scale pore and throat systems.Characterizing the microscopic properties of these reservoirs using nondestructive,quantitative methods serves as an important means to determine the characteristics of microscopic pores and throats in tight-sand reservoirs and the mechanism behind the influence of these characteristics on reservoir porosity and permeability.In this study,a low-permeability sandstone sample and two tight sandstone samples collected from the Ordos Basin were nondestructively tested using high-resolution nano-CT technology to quantitively characterize their microscopic pore throat structures and model them three-dimensionally(in 3D)based on CT threshold differences and gray models.A thorough analysis and comparison reveal that the three samples exhibit a certain positive correlation between their porosity and permeability but the most important factor affecting both porosity and permeability is the microscopic pore throat structure.Although the number of pores in tight sandstones shows a minor impact on their porosity,large pores(more than 20μm)contribute predominantly to porosity,suggesting that the permeability of tight sandstones is controlled primarily by large pore throats.For these samples,higher permeability corresponds to larger average throat sizes.Therefore,throats with average radii greater than 2μm can significantly improve the permeability of tight sandstones. 展开更多
关键词 Tight reservoir Nano-CT permeability Ordos Basin
在线阅读 下载PDF
Mechanical and Permeability Properties of Radial-Gradient Bone Scaffolds Developed by Voronoi Tessellation for Bone Tissue Engineering 被引量:2
4
作者 XU Qingyu HAI Jizhe +1 位作者 SHAN Chunlong LI Haijie 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期433-445,共13页
Irregular bone scaffolds fabricated using the Voronoi tessellation method resemble the morphology and properties of human cancellous bones.This has become a prominent topic in bone tissue engineering research in recen... Irregular bone scaffolds fabricated using the Voronoi tessellation method resemble the morphology and properties of human cancellous bones.This has become a prominent topic in bone tissue engineering research in recent years.However,studies on the radial-gradient design of irregular bionic scaffolds are limited.Therefore,this study aims to develop a radial-gradient structure similar to that of natural long bones,enhancing the development of bionic bone scaffolds.A novel gradient method was adopted to maintain constant porosity,control the seed site-specific distribution within the irregular porous structure,and vary the strut diameter to generate radial gradients.The irregular scaffolds were compared with four conventional scaffolds(cube,pillar BCC,vintiles,and diamond)in terms of permeability,stress concentration characteristics,and mechanical properties.The results indicate that the radial-gradient irregular porous structure boasts the widest permeability range and superior stress distribution compared to conventional scaffolds.With an elastic modulus ranging from 4.20 GPa to 22.96 GPa and a yield strength between 68.37 MPa and 149.40 MPa,it meets bone implant performance requirements and demonstrates significant application potential. 展开更多
关键词 Voronoi tessellation radial-gradient structure permeability mechanical properties
原文传递
Shear strength and permeability in the sliding zone soil of reservoir landslides:Insights into the seepage-shear coupling effect 被引量:1
5
作者 Qianyun Wang Huiming Tang +3 位作者 Pengju An Kun Fang Biying Zhou Xinping Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2031-2040,共10页
The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and... The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and the internal component of a landslide.Therefore,considering the strength changes of the sliding zone with seepage effects,they correspond with the actual hydrogeological circumstances.To investigate the shear behavior of sliding zone soil under various seepage pressures,24 samples were conducted by a self-developed apparatus to observe the shear strength and measure the permeability coefficients at different deformation stages.After seepage-shear tests,the composition of clay minerals and microscopic structure on the shear surface were analyzed through X-ray and scanning electron microscope(SEM)to understand the coupling effects of seepage on strength.The results revealed that the sliding zone soil exhibited strain-hardening without seepage pressure.However,the introduction of seepage caused a significant reduction in shear strength,resulting in strain-softening characterized by a three-stage process.Long-term seepage action softened clay particles and transported broken particles into effective seepage channels,causing continuous damage to the interior structure and reducing the permeability coefficient.Increased seepage pressure decreased the peak strength by disrupting occlusal and frictional forces between sliding zone soil particles,which carried away more clay particles,contributing to an overhead structure in the soil that raised the permeability coefficient and decreased residual strength.The internal friction angle was less sensitive to variations in seepage pressure than cohesion. 展开更多
关键词 Sliding zone soil permeability coefficient Shear strength Seepage pressure Reservoir landslides
在线阅读 下载PDF
2'-Fucosyllactose modulates the function of intestinal microbiota to reduce intestinal permeability in mice colonized by feces from healthy infants 被引量:1
6
作者 Qingxue Chen Liu Yang +7 位作者 Fangqin Xiang Ignatius Man-Yau Szeto Yalu Yan Biao Liu Jinju Cheng Lu Liu Bailiang Li Sufang Duan 《Food Science and Human Wellness》 2025年第1期282-292,共11页
2'-Fucosyllactose(2'-FL)shows the potential to support intestinal health as a natural prebiotic that bridges the gap between infant formula feeding and breastfeeding.However,the effect and mechanism of 2'-... 2'-Fucosyllactose(2'-FL)shows the potential to support intestinal health as a natural prebiotic that bridges the gap between infant formula feeding and breastfeeding.However,the effect and mechanism of 2'-FL in improving intestinal permeability are not clear.In this study,we constructed human microbiota-associated(HMA)mouse models by colonizing healthy infant feces in mice with antibiotic-depleted intestinal microbiota.The protective effect of 2'-FL on the intestinal permeability was explored using the HMA mouse models,and the combination of metagenomics was used to analyze the possible mechanisms by which the microorganisms reduced the intestinal permeability.The results showed that 2'-FL decreased the concentration of markers of intestinal permeability(enterotoxin and diamine oxidase(DAO))and increased the expression levels of tight junctions(occludin and claudin).Metagenomics revealed the enrichment of Bifidobacterium and increased the expression of glycoside hydrolases(GHs),including GH31,GH28,and GH5.In conclusion,2'-FL strengthened intestinal permeability function by improving microbiota composition to control the translocation of harmful substance. 展开更多
关键词 2’-Fucosyllactose Intestinal permeability Intestinal microbiota BIFIDOBACTERIUM
在线阅读 下载PDF
Evolution of CO_(2)Storage Mechanisms in Low-Permeability Tight Sandstone Reservoirs 被引量:1
7
作者 Xiangzeng Wang Hong Yang +3 位作者 Yongjie Huang Quansheng Liang Jing Liu Dongqing Ye 《Engineering》 2025年第5期107-120,共14页
Understanding the storage mechanisms in CO_(2)flooding is crucial,as many carbon capture,utilization,and storage(CCUS)projects are related to enhanced oil recovery(EOR).CO_(2)storage in reservoirs across large timesca... Understanding the storage mechanisms in CO_(2)flooding is crucial,as many carbon capture,utilization,and storage(CCUS)projects are related to enhanced oil recovery(EOR).CO_(2)storage in reservoirs across large timescales undergoes the two storage stages of oil displacement and well shut-in,which cover mul-tiple replacement processes of injection-production synchronization,injection only with no production,and injection-production stoppage.Because the controlling mechanism of CO_(2)storage in different stages is unknown,the evolution of CO_(2)storage mechanisms over large timescales is not understood.A math-ematical model for the evaluation of CO_(2)storage,including stratigraphic,residual,solubility,and mineral trapping in low-permeability tight sandstone reservoirs,was established using experimental and theoret-ical analyses.Based on a detailed geological model of the Huaziping Oilfield,calibrated with reservoir permeability and fracture characteristic parameters obtained from well test results,a dynamic simulation of CO_(2)storage for the entire reservoir life cycle under two scenarios of continuous injection and water-gas alternation were considered.The results show that CO_(2)storage exhibits the significant stage charac-teristics of complete storage,dynamic storage,and stable storage.The CO_(2)storage capacity and storage rate under the continuous gas injection scenario(scenario 1)were 6.34×10^(4)t and 61%,while those under the water-gas alternation scenario(scenario 2)were 4.62×10^(4)t and 46%.The proportions of stor-age capacity under scenarios 1 and 2 for structural or stratigraphic,residual,solubility,and mineral trap-ping were 33.36%,33.96%,32.43%,and 0.25%;and 15.09%,38.65%,45.77%,and 0.49%,respectively.The evolution of the CO_(2)storage mechanism showed an overall trend:stratigraphic and residual trapping first increased and then decreased,whereas solubility trapping gradually decreased,and mineral trapping continuously increased.Based on these results,an evolution diagram of the CO_(2)storage mechanism of low-permeability tight sandstone reservoirs across large timescales was established. 展开更多
关键词 CO_(2)storage mechanism Evolutionary patterns Oil reservoir Low permeability Tight sandstone
在线阅读 下载PDF
Development and evaluation of organic/metal ion double crosslinking polymer gel for anti-CO_(2)gas channeling in high temperature and low permeability reservoirs 被引量:1
8
作者 Hong-Bin Yang Hai-Zhuang Jiang +7 位作者 Zhe Xu Xing Zhang Tao Wang Hai-Ning Liu Xiao Ma Jian-Jun Zhu Xiang-Feng Zhang Wan-Li Kang 《Petroleum Science》 2025年第2期724-738,共15页
CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pe... CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pessimistic gas channeling.Consequently,there is a need to develop conformance control materials that can be used in CO_(2)-EOR.Herein,to address the challenges of low strength and poor stability of polymer gel in high temperature and low permeability reservoirs,a new organic/metal ion composite crosslinking polymer gel(AR-Gel)is reported,which is formed by low hydrolysis and medium to high molecular weight polymer(CX-305),organic crosslinking agent(phenolic resin),and aluminium citrate(AI(Ⅲ)).The crosslinking of AI(Ⅲ)with carboxyl group and organic/metal ion double crosslinking can construct a more complex and stable polymer gel structure on the basis of traditional chemical crosslinking,to cope with the harsh conditions such as high temperature.The structure-activity relationship of AR-Gel was revealed by rheology behavior and micro-morphology.The applicability of AR-Gel in reservoir was investigated,as was its strength and stability in supercritical CO_(2).The anti-gas channeling and enhanced oil recovery of AR-Gel were investigated using low permeability fractured cores,and the field process parameters were provided.The gel can be used to meet supercritical CO_(2)reservoirs at 110℃and 20,000 mg/L salinity,with long-term stability over 60 days.The plugging rate of AR-Gel for fractured co re was 97%,with subsequent CO_(2)flooding re sulting in an enhanced oil recovery by 34.5%.ARGel can effectively control CO_(2)gas channeling and enhanced oil recovery.It offers a new material with high strength and temperature resistance,which is particularly beneficial in the CO_(2)flooding for the conformance control of oil field. 展开更多
关键词 High temperature and low permeability reservoir CO_(2)flooding Anti-gas channeling Polymer gel
原文传递
Relating normal stiffness to permeability of a deformed self-affine rough fracture using its geometric properties
9
作者 Qinglin Deng Jianming Shangguan +3 位作者 Yinlin Ji Mauro Cacace Guido Blöcher Jean Schmittbuhl 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2829-2842,共14页
In subsurface projects where the host rock is of low permeability,fractures play an important role in fluid circulation.Both the geometrical and mechanical properties of the fracture are relevant to the permeability o... In subsurface projects where the host rock is of low permeability,fractures play an important role in fluid circulation.Both the geometrical and mechanical properties of the fracture are relevant to the permeability of the fracture.To evaluate this relationship,we numerically generated self-affine fractures reproducing the scaling relationship of the power spectral density(PSD)of the measured fracture surfaces.The fractures were then subjected to a uniform and stepwise increase in normal stress.A fast Fourier transform(FFT)-based elastic contact model was used to simulate the fracture closure.The evolution of fracture contact area,fracture closure,and fracture normal stiffness were determined throughout the whole process.In addition,the fracture permeability at each step was calculated by the local cubic law(LCL).The influences of roughness exponent and correlation length on the fracture hydraulic and mechanical behaviors were investigated.Based on the power law of normal stiffness versus normal stress,the corrected cubic law and the linear relationship between fracture closure and mechanical aperture were obtained from numerical modeling of a set of fractures.Then,we derived a fracture normal stiffness-permeability equation which incorporates fracture geometric parameters such as the root-mean-square(RMS),roughness exponent,and correlation length,which can describe the fracture flow under an effective medium regime and a percolation regime.Finally,we interpreted the flow transition behavior from the effective medium regime to the percolation regime during fracture closure with the established stiffness-permeability function. 展开更多
关键词 Fracture closure Elastic deformation Fluid flow permeability Normal stiffness Scaling relationship
在线阅读 下载PDF
Microstructure-based Investigation of the Mechanical and Gas Permeability Properties of Stone Powder-doped Mortar
10
作者 MIAO Gaixia XUE Cuizhen +3 位作者 ZHOU Aoxiang ZHANG Yunsheng HAN Yixuan QIAO Hongxia 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期519-532,共14页
In view of the increased focus on“green”and sustainable development and compliance with the national strategy for“carbon peak and carbon neutrality,”this study investigated the effect of replacing cement(0-20%)wit... In view of the increased focus on“green”and sustainable development and compliance with the national strategy for“carbon peak and carbon neutrality,”this study investigated the effect of replacing cement(0-20%)with limestone powder(stone powder)as a mineral admixture on the micro,meso,and macro properties of mortar.First,the applicability of stone powder was examined based on the physical filling and heat of hydration of stone powder-cement.Second,micro-meso testing methods,such as X-ray diffraction,scanning electron microscopy,thermogravimetry-differential scanning calorimetry,and nuclear magnetic resonance,were utilized to reveal the influencing mechanisms of stone powder on the microstructure of the mortar.Furthermore,the effect of stone powder on the compressive strength and gas permeability of the mortar was analyzed.Additionally,the time-dependent variations in the gas permeability and its functional relationship with the mechanical properties were determined.Finally,the correlation between the compressive strength and gas permeability with respect to the pore size of stone powder-doped mortar was established via gray-correlation analysis.The results show that an appropriate amount of stone powder(5%)can effectively improve the particle gradation,decelerate the release of the heat of hydration,increase the amount of hydration products,and improve the pore structure,thereby increasing the compressive strength and reducing the gas permeability coefficient.The gas permeability of stone powder-doped mortar was found to exhibit good time-dependent characteristics as well as a quadratic linear correlation with the compressive strength.The gray-correlation analysis results indicate that air pores exhibit the highest influence on the compressive strength and that the gas permeability coefficient is most significantly affected by large pores. 展开更多
关键词 limestone powder APPLICABILITY micro-meso scale mechanical property gas permeability gray-correlation analysis
原文传递
Lactococcus garvieae aggravates cholestatic liver disease by increasing intestinal permeability and enhancing bile acid reabsorption
11
作者 Man Liu Ying-Lan Ji +16 位作者 Yu-Jie Hu Ying-Xi Su Jie Yang Xiao-Yi Wang Hong-Yu Chu Xue Zhang Shi-Jing Dong Hui Yang Yu-Hang Liu Si-Min Zhou Li-Ping Guo Ying Ran Yan-Ni Li Jing-Wen Zhao Zhi-Guang Zhang Mei-Yu Piao Lu Zhou 《World Journal of Gastroenterology》 2025年第10期103-117,共15页
BACKGROUND Although an association between gut microbiota and cholestatic liver disease(CLD)has been reported,the precise functional roles of these microbes in CLD pathogenesis remain largely unknown.AIM To explore th... BACKGROUND Although an association between gut microbiota and cholestatic liver disease(CLD)has been reported,the precise functional roles of these microbes in CLD pathogenesis remain largely unknown.AIM To explore the function of gut microbes in CLD pathogenesis and the effects of gut microbiota on intestinal barrier and bile acid(BA)metabolism in CLD.METHODS Male C57BL/6J mice were fed a 0.05%3,5-diethoxycarbonyl-1,4-dihydrocollidine diet for 2 weeks to induce CLD.The sterile liver tissues of mice were then meticulously harvested,and bacteria in homogenates were identified through culture methods.Furthermore,16S ribosomal DNA sequencing was employed to analyze sterile liver samples collected from eight patients with primary biliary cholangitis(PBC)and three control individuals with hepatic cysts.The functional roles of the identified bacteria in CLD pathogenesis were assessed through microbiota transfer experiments,involving the evaluation of changes in intestinal permeability and BA dynamics.RESULTS Ligilactobacillus murinus(L.murinus)and Lactococcus garvieae(L.garvieae)were isolated from the bacterial culture of livers from CLD mice.L.murinus was prevalently detected in PBC patients and controls,whereas L.garvieae was detected only in patients with PBC but not in controls.Mice inoculated with L.garvieae exhibited increased susceptibility to experimental CLD,with both in vitro and in vivo indicating that L.garvieae disrupted the intestinal barrier function by down-regulating the expression of occludin and zonula occludens-1.Moreover,L.garvieae administration significantly upregulated the expression of the apical sodium-dependent BA transporter in the terminal ileum and increased serum BA levels.CONCLUSION L.garvieae contributes to excessive BA-induced hepatobiliary injury and liver fibrosis by increasing intestinal permeability and enhancing BA reabsorption. 展开更多
关键词 CHOLESTASIS MICROBIOTA Lactococcus garvieae Intestinal permeability Bile acid
暂未订购
Permeability evolution mechanism in deep coalbed methane extraction:Considering the competitive effects of adsorption-induced swelling,creep,and aperture compression
12
作者 Yanhui Yang Tao Zhang +7 位作者 Jianchun Guo Xiuqin Lu Zongyuan Li Jie Zeng Zhihong Zhao Yiqun Wang Dan Guo Jingwen Li 《Natural Gas Industry B》 2025年第4期416-431,共16页
During gas extraction from deep coal,the rock endures high effective stress,with both the time-dependent deformation and anisotropic structure of the rock controlling the permeability evolution.To reveal this phenomen... During gas extraction from deep coal,the rock endures high effective stress,with both the time-dependent deformation and anisotropic structure of the rock controlling the permeability evolution.To reveal this phenomenon,a numerical simulation framework of the finite volume method and transient embedded discrete fracture model is proposed to establish a new constitutive model that links poroelastoplastic deformation,adsorption-induced swelling,and aperture compression.From this model,anisotropic permeability tensors were derived to further achieve the simulation of coevolution.Meanwhile,our permeability model was verified against the measured permeability data,and the history match of the numerical model showed better results where the mismatch was less than 5%.The results indicate that(1)the long-term permeability evolution clearly showed the competitive effects of multiple deformation mechanisms,which involves three stages:compaction-dominated decline,adsorption-dominated rebound,and creep-controlled loss.(2)The increased number of compressible cleats/fractures accelerated the initial permeability decline,while the increased desorption-induced strain promoted faster rebound and enhancement and higher viscosity coefficients enhanced the creep effect,which led to significant long-term permeability loss.(3)Massive hydraulic fracturing created a larger drainage area,accelerating methane desorption and causing sharp permeability rebound with reduced residual gas,which shows that the permeability remained higher than the initial values even after the extensive extraction via the fractured horizontal wells.The permeability evolution mechanisms displayed varying properties,such as coal rank and burial depth,and distinct characteristics.A precise understanding of multiple competitive stress effects is crucial for optimizing coalbed methane extraction techniques and improving recovery efficiency. 展开更多
关键词 Deep coalbed methane Adsorption-induced swelling Unsteady creep Aperture compression FVM-tEDFM permeability evolution
在线阅读 下载PDF
Mechanical properties and permeability evolution of sandstone subjected to the coupling effects of chemical-seepage-stress
13
作者 WANG Wei CHEN Chao-wei +3 位作者 CAO Ya-jun JIA Yun LIU Shi-fan SHEN Wan-qing 《Journal of Central South University》 2025年第2期552-565,共14页
In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepa... In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepage of different chemical solutions.It is observed that with the increase of confining pressure,the peak stress,dilatancy stress,dilatancy stress ratio,peak strain,and elastic modulus of the sandstone increase while the Poisson ratio decreases and less secondary cracks are produced when the samples are broken.The pore pressure and confining pressure have opposite influences on the mechanical properties.With the increase of the applied axial stress,three stages are clearly identified in the permeability evolution curves:initial compaction stage,linear elasticity stage and plastic deformation stage.The permeability reaches the maximum value when the highest volumetric dilatancy is obtained.In addition,the hydrochemical action of salt solution with pH=7 and 4 has an obvious deteriorating effect on the mechanical properties and induces the increase of permeability.The obtained results will be useful in engineering to understand the mechanical and seepage properties of sandstone under the coupled chemical-seepage-stress multiple fields. 展开更多
关键词 red sandstone chemical corrosion multi-field coupling mechanical characteristics permeability evolution
在线阅读 下载PDF
Growth differentiation factor 15 alters intestinal barrier and increases permeability:A new molecular target in inflammatory bowel disease
14
作者 Antonio J Ruiz-Malagón Marina Herraiz-Vilela +16 位作者 Raquel Serrano-Pino Paula García-Ávila Luis Díaz-Suárez Ada DM Carmona-Segovia Victor M Becerra-Munoz Manuel Jiménez-Navarro Isabel Arranz-Salas Juan A López-Villodres Alejandra Fernández-Castañer Fernando Gutiérrez-Martínez Francisco J Rodríguez-González Raquel Camargo-Camero Guillermo Alcaín-Martínez Cristina Rodríguez-Díaz Eduardo García-Fuentes María J Sánchez-Quintero Carlos López-Gómez 《World Journal of Gastroenterology》 2025年第41期108-120,共13页
BACKGROUND Inflammatory bowel disease(IBD)is a group of chronic,inflammatory disorders that include Crohn’s disease and ulcerative colitis.IBD arises from the interaction of various environmental and genetic factors.... BACKGROUND Inflammatory bowel disease(IBD)is a group of chronic,inflammatory disorders that include Crohn’s disease and ulcerative colitis.IBD arises from the interaction of various environmental and genetic factors.Altered gut permeability and mitochondrial stress in the colonic mucosa are two mechanisms previously implicated in IBD pathogenesis.We have previously demonstrated activation of the mitochondrial unfolded protein response(UPRmt)in the colonic mucosa of IBD patients and linked this activation to pro-inflammatory signaling.Growth differentiation factor 15(GDF15)is an important downstream mediator of the UPRmt.AIM To investigate whether GDF15 has a role in IBD and how GDF15 impacts colonic epithelium.METHODS Circulating levels of GDF15 were assessed in plasma samples from IBD patients and healthy controls using an enzyme-linked immunosorbent assay.To study the effects of GDF15 on the colonic mucosa,we employed two different in vitro culture models:Colonic organoids and T84 cells.RESULTS We found that circulating GDF15 Levels were elevated in IBD patients and correlated with markers of inflammation(C-reactive protein)and intestinal permeability[haptoglobin and lipopolysaccharide-binding protein(LBP)].Additionally,we demonstrated that GDF15 alters the intestinal barrier and increases permeability by decreasing the levels of zonula occludens 1 and claudin 1,critical components of tight junctions.Thus,our findings confirm previous reports of increased circulating GDF15 levels in IBD patients and the activation of UPR^(mt).CONCLUSION In the present study,we describe a novel mechanism in IBD pathophysiology,linking mitochondrial stress to the disruption of the intestinal barrier and increased intestinal permeability. 展开更多
关键词 Growth differentiation factor 15 Inflammatory bowel disease Crohn's disease Ulcerative colitis Mitochondrial stress Intestinal permeability Tight junctions
暂未订购
Deformation and permeability of fractured rocks using fluid-solid coupling under loading-unloading conditions
15
作者 Jilu Zhang Xiaohan Zhou +3 位作者 Xinrong Liu Lei Fang Yuyu Liu Yan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4889-4907,共19页
Deep underground excavation causes considerable unloading effects,leading to a pronounced bias pressure phenomenon.The deformation and seepage characteristics of rock masses under different gas and confining pressures... Deep underground excavation causes considerable unloading effects,leading to a pronounced bias pressure phenomenon.The deformation and seepage characteristics of rock masses under different gas and confining pressures were investigated via triaxial loading and unloading seepage tests.When the influential coefficient of effective confining pressure(β)is less than 0.065,the seepage force considerably weakens the strength of fractured rock masses.Conversely,whenβis greater than 0.065,the opposite is true.Moreover,the increase in the axial load leads to an increase in the precast fracture volumetric strain,which is the main reason for the increase in fracture permeability.This effect is particularly significant during the unloading stage.Based on the test results,a method for calculating the dynamic seepage evolution of rock masses,considering the effects of rock mass damage and fracture deformation,is introduced,and the effectiveness of the calculation is validated.The entire description of the seepage under loading and unloading was accomplished.The equivalent relationship between the lateral and normal stresses on fracture surfaces ranges from 0.001 to 0.1,showing an exponential variation between the lateral stress influence coefficient on normal deformation(χ)and seepage pressure.Before the failure of the rock mass,the seepage in the fractures was in a linear laminar flow state.However,after the failure,when the gas pressure reached 2 MPa,the flow state in the fractures transitioned to nonlinear laminar flow.The results are important for predicting hazardous gas leaks during deep underground engineering excavation. 展开更多
关键词 Go-through fracture Fluid-solid coupling Fracture permeability Triaxial test Numerical simulation
在线阅读 下载PDF
Constraints on triggered seismicity and its control on permeability evolution
16
作者 Derek Elsworth Ziyan Li +10 位作者 Pengliang Yu Mengke An Fengshou Zhang Rui Huang Zihan Sun Guanglei Cui Tianyu Chen Quan Gan Yixin Zhao Jishan Liu Shimin Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期20-30,共11页
Triggered seismicity is a key hazard where fluids are injected or withdrawn from the subsurface and may impact permeability. Understanding the mechanisms that control fluid injection-triggered seismicity allows its mi... Triggered seismicity is a key hazard where fluids are injected or withdrawn from the subsurface and may impact permeability. Understanding the mechanisms that control fluid injection-triggered seismicity allows its mitigation. Key controls on seismicity are defined in terms of fault and fracture strength, second-order frictional response and stability, and competing fluid-driven mechanisms for arrest. We desire to constrain maximum event magnitudes in triggered earthquakes by relating pre-existing critical stresses to fluid injection volume to explain why some recorded events are significantly larger than anticipated seismic moment thresholds. This formalism is consistent with several uncharacteristically large fluid injection-triggered earthquakes. Such methods of reactivating fractures and faults by hydraulic stimulation in shear or tensile fracturing are routinely used to create permeability in the subsurface. Microearthquakes (MEQs) generated by such stimulations can be used to diagnose permeability evolution. Although high-fidelity data sets are scarce, the EGS-Collab and Utah FORGE hydraulic stimulation field demonstration projects provide high-fidelity data sets that concurrently track permeability evolution and triggered seismicity. Machine learning deciphers the principal features of MEQs and the resulting permeability evolution that best track permeability changes – with transfer learning methods allowing robust predictions across multiple eological settings. Changes in permeability at reactivated fractures in both shear and extensional modes suggest that permeability change (Δk) scales with the seismic moment (M) of individual MEQs as Δk∝M. This scaling relation is exact at early times but degrades with successive MEQs, but provides a method for characterizing crustal permeability evolution using MEQs, alone. Importantly, we quantify for the first time the role of prestress in defining the elevated magnitude and seismic moment of fluid injection-triggered events, and demonstrate that such MEQs can also be used as diagnostic in quantifying permeability evolution in the crust. 展开更多
关键词 SEISMICITY Dilatant hardening Critical stiffness Maximum seismic moment permeability change
在线阅读 下载PDF
Crack Self-healing of Cementitious Materials with Crystalline Admixture:Evaluation Based on Permeability Performance
17
作者 DUAN Longjie ZHANG Yongming 《Journal of Wuhan University of Technology(Materials Science)》 2025年第6期1660-1671,共12页
An evaluation method for self-healing capacity was designed,which includes the control of initial cracks and subsequent permeability testing.This method was employed to evaluate the self-healing behavior of mortars in... An evaluation method for self-healing capacity was designed,which includes the control of initial cracks and subsequent permeability testing.This method was employed to evaluate the self-healing behavior of mortars incorporating crystalline admixtures(CAs)under various conditions,including water immersion,limewater soaking,and wet-dry cycles,with varying CA dosages and crack widths.The experimental results indicate that cement possesses inherently self-healing capability.Limewater environments inhibits healing compared with water immersion;however,wet-dry cycles enhance the effectiveness of higher CA dosages.Increasing the CA content can not improve healing performance,and wide cracks(0.3 mm)substantially reduce the intrinsic self-healing potential of cement. 展开更多
关键词 SELF-HEALING crystalline admixture permeability re-curing environment
原文传递
Impact of Natural Fiber and Fatty Acid Organic Additives on the Permeability of Lime Mortars for Architectural Conservation
18
作者 Parsa Pahlavan 《Journal of Building Material Science》 2025年第1期20-29,共10页
Lime mortars have a rich history of being blended with organic additives to address weaknesses such as low setting time and hydric properties.This study specifically investigates the impact of incorporating straw and ... Lime mortars have a rich history of being blended with organic additives to address weaknesses such as low setting time and hydric properties.This study specifically investigates the impact of incorporating straw and sesame oil into lime mortar mixes,focusing on their influence on open porosity,permeability,water absorption,and durability.While previous studies explored the effects of natural fibers and fatty acid additives on lime mortars separately,this study examines their simultaneous incorporation in mortars.The results demonstrated that the simultaneous addition of sesame oil and straw decreased the water absorption values of the mortars to 77%.Furthermore,the inclusion of sesame oil resulted in a significant 30%increase in impermeability values.However,when both sesame oil and straw were added together,the increase in impermeability was less than 20%compared to the reference mortar with no additives.These findings highlights that the combined addition of sesame oil and straw has a lesser impact on the permeability values of mortars,which is a positive outcome,as maintaining optimal permeability is essential for the long-term preservation of historical substrates.The combination of straw and sesame oil enhances hydric properties without undermining the mortar’s structure and permeability.These results emphasize the sustainable nature of lime mortars in restoration projects,showcasing their compatibility with traditional masonry practices.By combining natural fibers with fatty acids,mortars demonstrate improved durability,offering a promising avenue for enhancing performance while retaining essential properties. 展开更多
关键词 Air Lime Reinforced Lime Mortars Natural Fibers Restorative Mortars permeability
暂未订购
Improved nuclear magnetic resonance-based Green-Ampt infiltration model incorporating dynamic permeability of clay
19
作者 TAO Gaoliang ZHOU Hengjie +3 位作者 CHEN Qingsheng NIMBALKAR Sanjay LIAO Lingjin PENG Pai 《Journal of Mountain Science》 2025年第10期3690-3705,共16页
The traditional Green-Ampt model does not accurately represent the infiltration behavior of clay soils.Infiltration in clay is influenced by low hydraulic conductivity,strong capillary forces,and a gradual transition ... The traditional Green-Ampt model does not accurately represent the infiltration behavior of clay soils.Infiltration in clay is influenced by low hydraulic conductivity,strong capillary forces,and a gradual transition zone between saturated and unsaturated zones.These factors often lead to overestimated infiltration rates and underestimated infiltration durations.Therefore,it is necessary to improve the model to better reflect the characteristics of clay infiltration and enhance its predictive accuracy and practical applicability.This study conducts hydraulic characterization tests,one-dimensional soil column rainfall infiltration experiments,and numerical analysis on a representative clay sampled from Wuhan,China,to investigate infiltration behaviors under varying rainfall intensities and initial moisture conditions.The study reveals that the proportion of the transition layer within the wetting layer decreases with increasing wetting front depth,following a power-law function.Under the same initial moisture content,this proportion tends to converge to a stable value regardless of rainfall intensity.In contrast,under the same rainfall intensity,a higher initial moisture content leads to a larger proportion of the transition layer at a given wetting front depth.Based on the NMR curve,the unsaturated permeability coefficients corresponding to different volumetric water contents of clay can be obtained quickly,accurately,and at low cost.By utilizing the unsaturated permeability coefficient prediction model based on the nuclear magnetic resonance(NMR)curve,the study refines the computational method for the equivalent permeability coefficient in the wetting layer during clay rainfall infiltration,and proposes an improved clay Green-Ampt infiltration model that considers the saturated-unsaturated differentiation layer and the dynamic variation of its equivalent permeability coefficient under continuous rainfall conditions.The computational results of the improved model were compared with measured infiltration data,numerical simulations,and predictions from the traditional GA model.The results indicate that the improved model effectively captures the dynamic variation between the transition layer and wetting layer and provides more accurate predictions of wetting front depth in clay,with an accuracy approximately 68.36%higher than that of the traditional GA model. 展开更多
关键词 Clay rainfall infiltration Stratification hypothesis NMR equivalent permeability coefficient Green Ampt model
原文传递
Data-driven predictive model of coal permeability based on microscopic fracture structure characterization
20
作者 Tianhao Yan Xiaomeng Xu +4 位作者 Jiafeng Liu Yihuai Zhang Muhammad Arif Xiaowei Xu Qiang Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4476-4489,共14页
Accurate prediction of coal reservoir permeability is crucial for engineering applications,including coal mining,coalbed methane(CBM)extraction,and carbon storage in deep unmineable coal seams.Owing to the inherent he... Accurate prediction of coal reservoir permeability is crucial for engineering applications,including coal mining,coalbed methane(CBM)extraction,and carbon storage in deep unmineable coal seams.Owing to the inherent heterogeneity and complex internal structure of coal,a well-established method for predicting permeability based on microscopic fracture structures remains elusive.This paper presents a novel integrated approach that leverages the intrinsic relationship between microscopic fracture structure and permeability to construct a predictive model for coal permeability.The proposed framework encompasses data generation through the integration of three-dimensional(3D)digital core analysis and numerical simulations,followed by data-driven modeling via machine learning(ML)techniques.Key data-driven strategies,including feature selection and hyperparameter tuning,are employed to improve model performance.We propose and evaluate twelve data-driven models,including multilayer perceptron(MLP),random forest(RF),and hybrid methods.The results demonstrate that the ML model based on the RF algorithm achieves the highest accuracy and best generalization capability in predicting permeability.This method enables rapid estimation of coal permeability by inputting two-dimensional(2D)computed tomography images or parameters of the microscopic fracture structure,thereby providing an accurate and efficient means of permeability prediction. 展开更多
关键词 Microscopic fracture structure Lattice Boltzmann method Machine learning Coal permeability Predictive model
在线阅读 下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部