Microorganisms constitute an essential component in the indoor environment,which is closely related to hu-man health.However,there is limited evidence regarding the associations between indoor airborne microbiome and ...Microorganisms constitute an essential component in the indoor environment,which is closely related to hu-man health.However,there is limited evidence regarding the associations between indoor airborne microbiome and systemic inflammation,as well as whether this association is modified by indoor particulate matter and the underlying mechanisms.In this prospective repeated-measure study among 66 participants,indoor airborne mi-crobiome was characterized using amplicon sequencing and qPCR.Indoor fine particulate matter(PM_(2.5))and inhalable particulate matter(PM10)were measured.Systemic inflammatory biomarkers were assessed,including white blood cell(WBC),neutrophil(NEUT),monocyte,eosinophil counts,and their proportions.Targeted serum amino acid metabolomics were conducted to explore the underlying mechanisms.Linear mixed-effect models re-vealed that bacterial and fungal Simpson diversity were significantly associated with decreased WBC and NEUT.For example,for each interquartile range increase in the bacterial Simpson diversity,WBC and NEUT changed by-4.53%(95%CI:-8.25%,-0.66%)and-5.95%(95%CI:-11.3%,-0.27%),respectively.Notably,increased inflammatory risks of airborne microbial exposure were observed when indoor PM_(2.5) and PM10 levels were below the WHO air quality guidelines.Mediation analyses indicated that dopamine metabolism partially mediated the anti-inflammatory effects of fungal diversity exposure.Overall,our study indicated protection from a diverse indoor microbial environment on cardiovascular health and proposed an underlying mechanism through amino acid metabolism.Additionally,health risks associated with microbial exposure deserve more attention in con-texts of low indoor particulate matter pollution.Further research is necessary to fully disentangle the complex relationships between indoor microbiome,air pollutants,and human health.展开更多
Fine particulate matter(particulate matter with a diameter of 2.5μm or less;PM2.5)causes millions of premature deaths globally1,but not all particles are equally harmful2-4.Current air-pollution control strategies,pr...Fine particulate matter(particulate matter with a diameter of 2.5μm or less;PM2.5)causes millions of premature deaths globally1,but not all particles are equally harmful2-4.Current air-pollution control strategies,prioritizing PM2.5 mass reduction,have provided considerable health benefits but further refinements based on differences in the toxicity of various emission sources may provide greater benefits5-7.Here we integrated field measurements with air-quality modelling to assess the unequal toxicities of PM2.5 from various anthropogenic sources.展开更多
The transport of suspended particulate matter is a crucial aspect of studies on sediment source-to-sink processes.However,research on its transport patterns in high-erosion areas of low-latitude seas remains limited.T...The transport of suspended particulate matter is a crucial aspect of studies on sediment source-to-sink processes.However,research on its transport patterns in high-erosion areas of low-latitude seas remains limited.To elucidate modern land-sea interaction processes controlled by the monsoon climate,this study investigates the seasonal transport patterns and control mechanisms of suspended particulate matter in the western Sunda Shelf.Results reveal significant seasonal variations in the spatial distribution of suspended particulate matter concentrations,with elevated levels observed during autumn compared with spring.These differences are directly attributed to the East Asian monsoon,including seasonal monsoon precipitation and the associated transport dynamics.During the northeast monsoon,the Malay Peninsula serves as a primary source for the western sea area,with terrestrial materials from its rivers transported to the northern Gulf of Thailand.This transport pattern shifts to an S-shaped,clockwise circulation during upwelling events.Conversely,in the southwest monsoon,rivers in the northern Gulf of Thailand become the predominant sources for the Sunda Shelf,with terrestrial materials carried by clockwise currents toward the eastern Malay Peninsula.When upwelling occurs off the southern Indochina Peninsula,one branch heads toward the South China Sea and the other toward the southern tip of the Malay Peninsula.The seasonal variation in material sources is further supported by the distribution of clay minerals and the discrimination results of rare earth element proxies,including(La/Sm)UCC-(Gd/Yb)UCCand(La/Yb)UCC-(Gd/Yb)UCC,in surface sediments from the Sunda Shelf and surrounding marine areas.展开更多
Objective Emerging evidence suggests that exposure to ultrafine particulate matter(UPM,aerodynamic diameter<0.1μm)is associated with adverse cardiovascular events.Previous studies have found that Shenlian(SL)extra...Objective Emerging evidence suggests that exposure to ultrafine particulate matter(UPM,aerodynamic diameter<0.1μm)is associated with adverse cardiovascular events.Previous studies have found that Shenlian(SL)extract possesses anti-inflammatory and antiapoptotic properties and has a promising protective effect at all stages of the atherosclerotic disease process.In this study,we aimed to investigated whether SL improves UPM-aggravated myocardial ischemic injury by inhibiting inflammation and cell apoptosis.Methods We established a mouse model of MI+UPM.Echocardiographic measurement,measurement of myocardialinfarct size,biochemical analysis,enzyme-linked immunosorbent assay(ELISA),histopathological analysis,Transferase dUTP Nick End Labeling(TUNEL),Western blotting(WB),Polymerase Chain Reaction(PCR)and so on were used to explore the anti-inflammatory and antiapoptotic effects of SL in vivo and in vitro.Results SL treatment can attenuate UPM-induced cardiac dysfunction by improving left ventricular ejection fraction,fractional shortening,and decreasing cardiac infarction area.SL significantly reduced the levels of myocardial enzymes and attenuated UPM-induced morphological alterations.Moreover,SL significantly reduced expression levels of the inflammatory cytokines IL-6,TNF-α,and MCP-1.UPM further increased the infiltration of macrophages in myocardial tissue,whereas SL intervention reversed this phenomenon.UPM also triggered myocardial apoptosis,which was markedly attenuated by SL treatment.The results of in vitro experiments revealed that SL prevented cell damage caused by exposure to UPM combined with hypoxia by reducing the expression of the inflammatory factor NF-κB and inhibiting apoptosis in H9c2 cells.Conclusion Overall,both in vivo and in vitro experiments demonstrated that SL attenuated UPMaggravated myocardial ischemic injury by inhibiting inflammation and cell apoptosis.The mechanisms were related to the downregulation of macrophages infiltrating heart tissues.展开更多
The risk of exposure to particulate matter(PM)has been consistently highlighted globally owing to its detrimental effects on the respiratory and cardiovascular systems and in the development of lung cancer.Additionall...The risk of exposure to particulate matter(PM)has been consistently highlighted globally owing to its detrimental effects on the respiratory and cardiovascular systems and in the development of lung cancer.Additionally,PM promotes cancer cell metastasis;however,research elucidating the precise mechanisms underlying this phenomenon and the strategies to inhibit it remains limited.The aim of this study was to elucidate the mechanism underlying PM-induced cancer metastasis and investigate the preventive role of ginsenoside Rg3.We treated macrophages with PM and confirmed an increase in the expression and secretion of chemokines,such as CCL3,CCL4,and CCL5.This effect was mediated by the MAPK and NF-kB pathways,and Rg3 inhibited this process by suppressing chemokine expression.These chemokines regulate the expression of epithelial-mesenchymal transition(EMT)markers in cancer cells,including Snail,Slug,ZEB1,and E-cadherin.The regulated EMT markers increased the motility of cancer cells in vitro.Furthermore,an increase in CCL3,CCL4,and CCL5 in the bronchoalveolar lavage fluid(BALF)was confirmed in a PM inhalation mouse model,and Rg3 reduced PM-induced cancer metastasis.The study findings suggest the potential use of Rg3 as a therapeutic agent to prevent PM-induced cancer metastasis.展开更多
Serious fine particulate matter(PM_(2.5))pollution and rapidly increasing of ground-level ozone(O_(3))concentrations are concern issues in China.To achieve the comprehensive control of PM_(2.5)-O_(3) composite air pol...Serious fine particulate matter(PM_(2.5))pollution and rapidly increasing of ground-level ozone(O_(3))concentrations are concern issues in China.To achieve the comprehensive control of PM_(2.5)-O_(3) composite air pollution,exploring the common sources of PM_(2.5) and VOCs is essential.However,previous researches most carried out either PM_(2.5) or VOCs source appointment.In this study,we applied the ensemble source apportionment method to explore the impacts of common sources on PM_(2.5)-VOCs.Subsequently,we obtained the ensemble source impacts on O_(3) combining the extracted VOCs source profile and ozone formation potential.We found that the focus of environmentalmanagement and source control should be varied accordingly for different pollutants.Vehicle emission was the largest contributor(41%)to PM_(2.5)-VOCs,while industrial emission was the main common source(51%)to O_(3).The result showed that the O_(3) production rate is not only related to the VOCs emission,but also to the reactivity of VOCs.In addition,sensitivity tests revealed that temperature was the main factor affecting O_(3) formation.The study provides a framework to explore the common sources impact on PM_(2.5) and VOCs,which is benefit to address both PM_(2.5) and O_(3) mitigations.展开更多
Objective Chronic obstructive pulmonary disease(COPD)is a major health concern in northwest China;however,the impact of particulate matter(PM)exposure during sand-dust storms(SDS)remains poorly understood.Therefore,th...Objective Chronic obstructive pulmonary disease(COPD)is a major health concern in northwest China;however,the impact of particulate matter(PM)exposure during sand-dust storms(SDS)remains poorly understood.Therefore,this study aimed to investigate the association between PM exposure on SDS days and COPD hospitalization risk in arid regions.Methods Data on daily COPD hospitalizations were collected from 323 hospitals from 2018 to 2022,along with the corresponding air pollutant and meteorological data for each city in Gansu Province.Employing a space-time-stratified case-crossover design and conditional Poisson regression,we analyzed 265,379 COPD hospitalizations.Results PM exposure during SDS days significantly increased COPD hospitalization risk[relative risk(RR)for PM2.5,lag 3:1.028,95%confidence interval(CI):1.021–1.034],particularly among men and the elderly,and during the cold season.The burden of PM exposure on COPD hospitalization was substantially high in Northwest China,especially in the arid and semi-arid regions.Conclusion Our findings revealed a positive correlation between PM exposure during SDS episodes and elevated hospitalization rates for COPD in arid and semi-arid zones in China.This highlights the urgency of developing region-specific public health strategies to address adverse respiratory outcomes associated with SDS-related air quality deterioration.展开更多
Mesoscale eddies are widespread in the global ocean,significantly influencing the physical,chemical,and biological structures of water column.Based on the CTD data and suspended particulate matter(SPM)data collected a...Mesoscale eddies are widespread in the global ocean,significantly influencing the physical,chemical,and biological structures of water column.Based on the CTD data and suspended particulate matter(SPM)data collected at 36 hydrographic stations during a field cruise in southern Mozambique Channel,combined with satellite altimeter observations,we identified a series of mesoscale eddies traversing the Mozambique Channel.Our hydrographic measurements,coupled with in situ chlorophyll fluorescence data,reveal that these eddies significantly influence thermohaline structure and chlorophyll distribution,which in turn affects primary productivity and SPM concentrations in the upper ocean.The cyclonic eddies facilitate the upwelling of cold subsurface water,leading to a shallowing of the pycnocline and the creation of a low-temperature anomaly with variable salinity anomalies at different depths.Conversely,anticyclonic eddies submerge warm surface water,deepening the pycnocline,and resulting in a high-temperature anomaly accompanied by distinct salinity patterns.Significantly,a coastal anticyclonic eddy was observed to intercept terrestrial material from the Delagoa Bight,redirecting it west of 36°E.This study presents unique and quasi-synchronous CTD datasets capturing mesoscale eddy impacts,and provided valuable insights into SPM variability within the often-neglected southern Mozambique Channel.展开更多
Air pollution is fourth major cause of death worldwide.Recent evidence suggests that particulate matter(PM)may affect kidneys,and the effect may be size and composition dependent.In this study,PM_(0.1),PM_(2.5),and PM...Air pollution is fourth major cause of death worldwide.Recent evidence suggests that particulate matter(PM)may affect kidneys,and the effect may be size and composition dependent.In this study,PM_(0.1),PM_(2.5),and PM_(10)were collected from ambient air and given to BALB/c male mice at 0.25 mg/m^(3) concentration in whole-body inhalation chamber for 28days(6 h/day,5 days/week)to assess their effect on kidney.Physico-chemical characterization of PM particles by SEM,ICP-MS and HPLC showed their various shapes along with the presence of metals and poly aromatic hydrocarbons(PAHs).Following PM exposure,increased serum creatinine levels were observed in animals along with dilated tubules,protein cast deposition,necrosis,immune infiltration,collagen deposition,and shrunken glomeruli in kidney.Immunofluorescence staining showed higher expressions of kidney injury molecule1(KIM-1),cystatin C,β2 microglobulin(β2M),and alpha smooth muscle actin(α-SMA)and fibronectin,suggesting renal injury and fibrosis.PM exposure also increased malondialdehyde(MDA)content and decreased superoxide dismutase 2(SOD2)activity,which in turn leads to induction of inflammation.Mechanistically,PM exposure further inhibited the nuclear factor erythroid 2-related factor 2(Nrf2)signalling and induced kelch-like ECH-associated protein 1(Keap1)and nuclear factor kappa-light-chain-enhancer of activated B(NF-κB).Interestingly,the effect of PM_(2.5)was more severe than PM_(0.1)and PM_(10),leading to higher levels of proinflammatory NF-κB and greater Nrf2 inhibition.Overall,our findings suggested that inhalation exposure to size-segregated PM can cause kidney damage and fibrosis,and PM_(2.5)showed higher toxicity than PM_(0.1)and PM_(10).展开更多
Controlling the adhesion of potentially corrosive substances from flue gas on grate bar is crucial for extending the operational lifespan of the equipment.The adhesive behaviour and mechanism of ultrafine particulate ...Controlling the adhesion of potentially corrosive substances from flue gas on grate bar is crucial for extending the operational lifespan of the equipment.The adhesive behaviour and mechanism of ultrafine particulate matters(UPM)throughout the sintering process were elucidated,and measures to control adhesion on grate bars were developed.Research findings indicated that a small quantity of UPM were found on grate bar during the initial sintering stages(ignition stage and middle stageⅠandⅡ).The main compositions of UPM were FexOy-rich,CaO-rich,and aluminium silicate-rich particles.In contrast,corrosive substances like alkali metal compounds were almost absent.These UPM adhered onto grate bar primarily through inertial impaction.When moving to the final sintering stages(middle stageⅢand temperature rising stage),many UPM rich in corrosive substances like NaCl and KCl adhered to the grate bar.These UPM adhered to grate bar through thermal diffusion and vortex deposition.Solid waste water washing technology can greatly decrease the quantity of UPM(rich in NaCl and KCl)on the grate bar due to vortex deposition and thermal diffusion,and it represents a potentially promising way to control adhesion and corrosion on grate bars.展开更多
Objective Several epidemiological observational studies have related particulate matter(PM)exposure to Inflammatory bowel disease(IBD),but many confounding factors make it difficult to draw causal links from observati...Objective Several epidemiological observational studies have related particulate matter(PM)exposure to Inflammatory bowel disease(IBD),but many confounding factors make it difficult to draw causal links from observational studies.The objective of this study was to explore the causal association between PM_(2.5)exposure,its absorbance,and IBD.Methods We assessed the association of PM_(2.5)and PM_(2.5)absorbance with the two primary forms of IBD(Crohn’s disease[CD]and ulcerative colitis[UC])using Mendelian randomization(MR)to explore the causal relationship.We conducted two-sample MR analyses with aggregated data from the UK Biobank genome-wide association study.Single-nucleotide polymorphisms linked with PM_(2.5)concentrations or their absorbance were used as instrumental variables(IVs).We used inverse variance weighting(IVW)as the primary analytical approach and four other standard methods as supplementary analyses for quality control.Results The results of MR demonstrated that PM_(2.5)had an adverse influence on UC risk(odds ratio[OR]=1.010;95%confidence interval[CI]=1.001–1.019,P=0.020).Meanwhile,the results of IVW showed that PM_(2.5)absorbance was also causally associated with UC(OR=1.012;95%CI=1.004–1.019,P=0.002).We observed no causal relationship between PM_(2.5),PM_(2.5)absorbance,and CD.The results of sensitivity analysis indicated the absence of heterogeneity or pleiotropy,ensuring the reliability of MR results.Conclusion Based on two-sample MR analyses,there are potential positive causal relationships between PM_(2.5),PM_(2.5)absorbance,and UC.展开更多
Objective The effects of prolonged exposure to persistently elevated atmospheric pollutants,commonly termed air pollution waves,on fertility intentions remain inadequately understood.This study aims to investigate the...Objective The effects of prolonged exposure to persistently elevated atmospheric pollutants,commonly termed air pollution waves,on fertility intentions remain inadequately understood.This study aims to investigate the association between particulate matter(PM)exposure and fertility intentions.Methods In this nationwide cross-sectional study,we analyzed data from 10,747 participants(5496 females and 5251 males).PM waves were defined as periods lasting 3‒6 consecutive days during which the daily average concentrations exceeded China’s Ambient Air Quality Standards Grade II thresholds(PM2.5>75μg/m3 and PM10>150μg/m3).We employed multivariate logistic regression models to assess the association between exposure to PM waves and fertility intentions.Results Significant inverse associations were detected between exposure to PM2.5 wave events(characterized by concentrations exceeding 75μg/m3 for durations of 4‒6 days,P<0.05)and PM10 wave events(defined as concentrations exceeding 150μg/m3 for 6 consecutive days,P<0.05)and fertility intentions among females.In contrast,neither the PM2.5 wave nor the PM10 wave events demonstrated statistically significant correlations with fertility intentions in males(P>0.05 for all comparisons).The potentially susceptible subgroup was identified as females aged 20–30 years.Conclusions Our results provide the first evidence that PM2.5 and PM10 waves are associated with a reduction in female fertility intentions,offering critical insights for the development of public health policies and strategies aimed at individual protection.展开更多
This study was conducted to investigate the effects of fresh fermented soybean meal(FSM) on the growth performance of nursery piglets, nitrogen excretion in feces, and the concentrations of ammonia(NH3) and partic...This study was conducted to investigate the effects of fresh fermented soybean meal(FSM) on the growth performance of nursery piglets, nitrogen excretion in feces, and the concentrations of ammonia(NH3) and particulate matter(PM) in the piggery. A total of 472 nursery piglets(Landrace×Yorkshire,(16.3±0.36) kg body weight) were randomly allocated into two treatments with 236 pigs in each treatment. The pigs were fed the basal diet without fresh FSM(control) or diet containing 10%(100 g/kg) fresh FSM(FSM group), and the crude protein content of the two groups was consistent. The feeding trial lasted for 28 d. The results showed that the pigs fed fresh FSM had increased(P〈0.05) average daily gain(ADG) compared with the control. There was no significant difference(P〈0.05) in feed to gain ratio(F:G) between the two groups. During the whole experiment, the concentration of NH3 in the piggery decreased(P〈0.05) by 19.0%, and the concentrations of PM(PM(10) and PM(2.5)) in the piggery decreased(P〈0.05) by 19.9% and 11.6%, respectively, in the FSM group, compared with the control. The ammonia nitrogen and nitrite content in feces increased(P〈0.05) by 32.9% and 28.4%, respectively, in the FSM group. The fecal p H declined(P〈0.05) significantly in the FSM group compared with the control. At the end of experiment, total protein(TP) concentration was increased(P〈0.05) significantly and blood urea nitrogen(BUN) concentration was decreased(P〈0.05) for pigs fed the diet with fresh FSM. The results indicated that dietary fresh FSM not only improved the growth performance of nursery piglets, but also reduced the NH3 concentration in the piggery due to nitrogen conversion, and decreased the concentrations of PM(10) and PM(2.5) in the piggery.展开更多
The formation and development of weather events has a great impact on the diffusion, accumulation and transport of air pollutants, and causes great changes in the particulate pollution level. It is very important to s...The formation and development of weather events has a great impact on the diffusion, accumulation and transport of air pollutants, and causes great changes in the particulate pollution level. It is very important to study their influence on particulate pollution. Lanzhou is one of the most particulate-polluted cities in China and even in the world. Particulate matter (PM) including TSP, PM〉10, PMzs-10, PM2.5 and PM1.0 concentrations were simultaneously measured during 2005-2007 in Lanzhou to evaluate the influence of three kinds of weather events - dost, precipitation and cold front - on the concentrations of PM with different sizes and detect the temporal evolution. The main results are as follows: (1) the PM pollution in Lanzhou during dust events was very heavy and the rate of increase in the concentration of PM2.5-10 was the highest of the five kinds of particles. During dust-storm events, the highest peaks of the concentrations of fine particles (PM2.5 and PM1.0) occurred 3 hr later than those of coarse particles (PM〉10 and PM/.5-10). (2) The major effect of precipitation events on PM is wet scavenging. The scavenging rates of particles were closely associated with the kinds of precipitation events. The scavenging rates of TSP, PM〉10 and PMa.5-10 by convective precipitation were several times as high as those caused by frontal precipitation for the same precipitation amount, the reason being the different formation mechanism and precipitation characteristics of the two kinds of precipitation. Moreover, there exists a limiting value for the scavenging rates of particles by precipitation. (3) The major effect of cold-front events on particles is clearance. However, during cold-front passages, the PM concentrations could sometimes rise first and decrease afterwards, which is the critical difference in the influence of cold fronts on the concentrations of particulate pollutants vs. gaseous pollutants.展开更多
The presence of heavy metals(HMs) in particulate matters(PMs) particularly fine particles such as PM2.5 poses potential risk to the health of human being. The purpose of this study was to analyze the contents of H...The presence of heavy metals(HMs) in particulate matters(PMs) particularly fine particles such as PM2.5 poses potential risk to the health of human being. The purpose of this study was to analyze the contents of HMs in PM2.5 in the atmospheric monitoring stations in Isfahan city,Iran, in different seasons between March 2014 and March 2015 and their source identification using principle component analysis(PCA). The samples of PM2.5 were taken using a high volume sampler in 7 monitoring stations located throughout the city and industrial zones since March 2014 to March 2015. The HMs content of the samples was measured using ICP-MS.The results showed that the concentrations of As, Cd and Ni were in a range of 23–36, 1–12,and 5–76 ng/m3 at all the stations which exceeded the US-EPA standards. Furthermore,the concentrations of Cr and Cu reached to 153 and 167 ng/m3 in some stations which were also higher than the standard levels. Depending on the potential sources of HMs, their concentration in PM2.5 through the various seasons was different. PCA illustrated that the different potential sources of HMs in the atmosphere, showing that the most important sources of HMs originated from fossil fuel combustion, abrasion of vehicle tires, industrial activities(e.g., iron and steel industries) and dust storms. Management and control of air pollution of industrial plants and vehicles are suggested for decreasing the risk of the HMs in the region.展开更多
Sediment resuspension plays an important role in the transport and fate of heavy metals in the aquatic environment. In the present study, the release and binding forms of Cr, Cu, Zn, Pb under hydrodynamic conditions w...Sediment resuspension plays an important role in the transport and fate of heavy metals in the aquatic environment. In the present study, the release and binding forms of Cr, Cu, Zn, Pb under hydrodynamic conditions were investigated using an annular flume. Two sediments located at YLZ and GBD from Liangshui River, Beijing were resuspended for 10 hr at 0.159 and 0.267 m/see, respectively. The concentrations of suspended particulate matters of YLZ were higher than those of GBD during resuspension, indicating that the former sediment is more sensitive to the velocity. Cr in the dissolved phase stayed nearly constant at about 2.25 and 1.84 I^g/L for YLZ and GBD, respectively, due to the high percentage of its stable binding fractions in both sediments, while Cu, Zn, and Pb showed a fast release in the initial period of time. However, their concentrations in SPM generally decreased with time and were higher at the lower velocity of 0.159 m/see, which resulted from the entrainment and depressing effect of larger size particles with lower heavy metal content, commonly referred to as the "particle concentration effect". In addition, the binding form and heavy metal fractions were also found to vary during the resuspension event. A decrease in the sulphide/organic matters bounded form in GBD sediment was observed, whereas no visible changes were perceived in YLZ site samples. This phenomenon is due to the oxidation of heavy metal-sulphide binding forms, which originated from its high acid volatile sulphide content in GBD sediment.展开更多
In order to understand the size distribution and the main kind of heavy metals in particulate matter on the lead and zinc smelting affected area, particulate matter (PM) and the source samples were collected in Zhuz...In order to understand the size distribution and the main kind of heavy metals in particulate matter on the lead and zinc smelting affected area, particulate matter (PM) and the source samples were collected in Zhuzhou, Hunan Province from December 2011 to January 2012 and the results were discussed and interpreted. Atmospheric particles were collected with different sizes by a cascade impactor. The concentrations of heavy metals in atmospheric particles of different sizes, collected from the air and from factories, were measured using an inductively coupled plasma mass spectrometry (ICP-MS). The results indicated that the average concentration of PM, chromium (Cr), arsenic (As), cadmium (Cd) and lead (Pb) in PM was 177.3 ± 33.2 μg/m^3, 37.3 ± 8.8 ng/m^3, 17.3 ± 8.1 ng/m^3, 4.8 ± 3.1 ng/m^3 and 141.6 ± 49.1 ng/m^3, respectively. The size distribution of PM displayed a bimodal distribution; the maximum PM size distribution was at 1.1-2.1 μm, followed by 9-10 μm. The size distribution of As, cd and Pb in PM was similar to the distribution of the PM mass, with peaks observed at the range of 1.1-2.1 μm and 9-10 μm ranges while for Cr, only a single-mode at 4.7-5.8 μm was observed. PM (64.7%, As (72.5%), cd (72.2%) and Pb (75.8%) were associated with the fine mode below 2.1 μm, respectively, while Cr (46.6%) was associated with the coarse mode. The size distribution characteristics, enrichment factor, correlation coefficient values, source information and the analysis of source samples showed that As, Cd and Pb in PM were the typical heavy metal in lead and zinc smelting affected areas, which originated mainly from lead and zinc smelting sources.展开更多
During October 1993 and March 1996, the samples of fine and coarse air particulate matter have been collected at representative urban and rural site of Beijing with the Gent Stacked Filter Unit Sampler. Instrumental n...During October 1993 and March 1996, the samples of fine and coarse air particulate matter have been collected at representative urban and rural site of Beijing with the Gent Stacked Filter Unit Sampler. Instrumental neutron activation analysis (INAA) and proton induced X ray emission (PIXE) method were used to determine the elemental composition of the particulate matter. Average elemental concentrations and enrichment factors were calculated for the fine and coarse size fractions. Based on the particulate matter data obtained at urban and rural site together with the chemical constituents of the aerosol from the different sources are discussed. The results show that the relative particulate mass and elemental concentrations of crustal and pollutant elements in the air particulate matter collected over the urban are higher than rural and winter heating period are higher than in ordinary season. Beijing atmosphere is polluted by aerosols from regional and faraway sources. It was noticed that the toxic or harmful elements such as As, Sb, Pb, Cu, Ni, S and Zn were mainly enriched in fine particles with diameter less than 2 μm. A receptor model was used to assess the relative contribution of major air pollution sources at receptor sites in Beijing. Trace elements were used as the markers for the above assessment. Factor analysis method was used to identify possible emission sources of air particles. The major sources of dust soil, coal burning, motor vehicle emission, industry emission and refuse incineration were identified.展开更多
Total suspended particulates (TSP) samples were collected using low pressure impactors (Andersen Series 20-800, USA) on typical clear, hazy and foggy days in Beijing in order to investigate the characteristics of ...Total suspended particulates (TSP) samples were collected using low pressure impactors (Andersen Series 20-800, USA) on typical clear, hazy and foggy days in Beijing in order to investigate the characteristics of size distributions and elemental compositions of particulate matter (PM) in different weather conditions. The concentrations of sixteen elements, including Na, Mg, Al, K, Ca, Mn, Fe, Ni, Cu, Zn, As, Se, Cd, Ba, T1 and Pb were detected using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that Ca, A1, Fe, Mg and Ba on foggy days were 2.0 2.6 times higher than on clear days, and 2.3-2.9 times higher than on hazy days. Concentrations of Cu, Zn, As, Se and Pb on foggy days were 163.5, 1186.7, 65.9, 32.0 and 708.2 ng m-3, respectively, in fine particles, and 68.1, 289.5, 19.8, 1.6 and 103.8 ng m-3, respectively, in coarse particles. This was 1.0~8.4 times higher and 1.4-7.4 times higher than on clear and hazy days, respectively. It is then shown that Mg, A1, Fe, Ca and Ba were mainly associated with coarse particles, peaking at 4.7~5.8 μm; that Cd, Se, Zn, As, T1 and Pb were most dominant in fine particles, peaking at 0.43-1.1 μm; and that Na, K, Ni, Cu and Mn had a multi-mode distribution, with peaks at 0.43-1.1 μm and 4.7-5.8 μm. The enrichment factors indicated that coal combustion along with vehicle and industry emissions may be the main sources of pollution elements.展开更多
The present study was designed to alert the public opinion and policy makers on the supposed enhancing effects of exposure to ambient air particulate matter with aerodynamic diameters < 2.5 mm (PM 2.5 ) on non-alco...The present study was designed to alert the public opinion and policy makers on the supposed enhancing effects of exposure to ambient air particulate matter with aerodynamic diameters < 2.5 mm (PM 2.5 ) on non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disease in Western countries. For far too long literature data have been fixated on pulmonary diseases and/or cardiovascular disease, as consequence of particulate exposure, ignoring the link between the explosion of obesity with related syndromes such as NAFLD and air pollution, the worst characteristics of nowadays civilization. In order to delineate a clear picture of this major health problem, further studies should investigate whether and at what extent cigarette smoking and exposure to ambient air PM 2.5 impact the natural history of patients with obesity-related NAFLD,i.e. , development of non alcoholic steatohepatitis, disease characterized by a worse prognosis due its progression towards fibrosis and hepatocarcinoma.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFC3702704)the National Natural Science Foundation of China(Nos.22376005,22076006 and 82073506).
文摘Microorganisms constitute an essential component in the indoor environment,which is closely related to hu-man health.However,there is limited evidence regarding the associations between indoor airborne microbiome and systemic inflammation,as well as whether this association is modified by indoor particulate matter and the underlying mechanisms.In this prospective repeated-measure study among 66 participants,indoor airborne mi-crobiome was characterized using amplicon sequencing and qPCR.Indoor fine particulate matter(PM_(2.5))and inhalable particulate matter(PM10)were measured.Systemic inflammatory biomarkers were assessed,including white blood cell(WBC),neutrophil(NEUT),monocyte,eosinophil counts,and their proportions.Targeted serum amino acid metabolomics were conducted to explore the underlying mechanisms.Linear mixed-effect models re-vealed that bacterial and fungal Simpson diversity were significantly associated with decreased WBC and NEUT.For example,for each interquartile range increase in the bacterial Simpson diversity,WBC and NEUT changed by-4.53%(95%CI:-8.25%,-0.66%)and-5.95%(95%CI:-11.3%,-0.27%),respectively.Notably,increased inflammatory risks of airborne microbial exposure were observed when indoor PM_(2.5) and PM10 levels were below the WHO air quality guidelines.Mediation analyses indicated that dopamine metabolism partially mediated the anti-inflammatory effects of fungal diversity exposure.Overall,our study indicated protection from a diverse indoor microbial environment on cardiovascular health and proposed an underlying mechanism through amino acid metabolism.Additionally,health risks associated with microbial exposure deserve more attention in con-texts of low indoor particulate matter pollution.Further research is necessary to fully disentangle the complex relationships between indoor microbiome,air pollutants,and human health.
文摘Fine particulate matter(particulate matter with a diameter of 2.5μm or less;PM2.5)causes millions of premature deaths globally1,but not all particles are equally harmful2-4.Current air-pollution control strategies,prioritizing PM2.5 mass reduction,have provided considerable health benefits but further refinements based on differences in the toxicity of various emission sources may provide greater benefits5-7.Here we integrated field measurements with air-quality modelling to assess the unequal toxicities of PM2.5 from various anthropogenic sources.
基金the Basic Scientific Fund for National Public Research Institutes of China(No.2023Q03)the National Natural Science Foundation of China(Nos.42476078,42306091)+2 种基金the National Programme on Global Change and Air-Sea Interaction(Nos.GASI-04-HYDZ-02,GASI-02-SCS-CJB01)the China-Malaysia Cooperation Project‘Effect on Variability of Seasonal Monsoon on Sedimentary Process in Peninsular Malaysia Waters’the China-Thailand Cooperation Project‘Research on Vulnerability of Coastal Zone’。
文摘The transport of suspended particulate matter is a crucial aspect of studies on sediment source-to-sink processes.However,research on its transport patterns in high-erosion areas of low-latitude seas remains limited.To elucidate modern land-sea interaction processes controlled by the monsoon climate,this study investigates the seasonal transport patterns and control mechanisms of suspended particulate matter in the western Sunda Shelf.Results reveal significant seasonal variations in the spatial distribution of suspended particulate matter concentrations,with elevated levels observed during autumn compared with spring.These differences are directly attributed to the East Asian monsoon,including seasonal monsoon precipitation and the associated transport dynamics.During the northeast monsoon,the Malay Peninsula serves as a primary source for the western sea area,with terrestrial materials from its rivers transported to the northern Gulf of Thailand.This transport pattern shifts to an S-shaped,clockwise circulation during upwelling events.Conversely,in the southwest monsoon,rivers in the northern Gulf of Thailand become the predominant sources for the Sunda Shelf,with terrestrial materials carried by clockwise currents toward the eastern Malay Peninsula.When upwelling occurs off the southern Indochina Peninsula,one branch heads toward the South China Sea and the other toward the southern tip of the Malay Peninsula.The seasonal variation in material sources is further supported by the distribution of clay minerals and the discrimination results of rare earth element proxies,including(La/Sm)UCC-(Gd/Yb)UCCand(La/Yb)UCC-(Gd/Yb)UCC,in surface sediments from the Sunda Shelf and surrounding marine areas.
基金supported by CACMS Innovation Fund(No CI2021A04611,CI2021A05106)Scientific and technological innovation project of China Academy of Chinese Medical Sciences(CI2021B015)+1 种基金Scientific and technological innovation project of China Academy of Chinese Medical Sciences(CI2023E001TS01)Fundamental research funds for the central public welfare research institutes(L2022035).
文摘Objective Emerging evidence suggests that exposure to ultrafine particulate matter(UPM,aerodynamic diameter<0.1μm)is associated with adverse cardiovascular events.Previous studies have found that Shenlian(SL)extract possesses anti-inflammatory and antiapoptotic properties and has a promising protective effect at all stages of the atherosclerotic disease process.In this study,we aimed to investigated whether SL improves UPM-aggravated myocardial ischemic injury by inhibiting inflammation and cell apoptosis.Methods We established a mouse model of MI+UPM.Echocardiographic measurement,measurement of myocardialinfarct size,biochemical analysis,enzyme-linked immunosorbent assay(ELISA),histopathological analysis,Transferase dUTP Nick End Labeling(TUNEL),Western blotting(WB),Polymerase Chain Reaction(PCR)and so on were used to explore the anti-inflammatory and antiapoptotic effects of SL in vivo and in vitro.Results SL treatment can attenuate UPM-induced cardiac dysfunction by improving left ventricular ejection fraction,fractional shortening,and decreasing cardiac infarction area.SL significantly reduced the levels of myocardial enzymes and attenuated UPM-induced morphological alterations.Moreover,SL significantly reduced expression levels of the inflammatory cytokines IL-6,TNF-α,and MCP-1.UPM further increased the infiltration of macrophages in myocardial tissue,whereas SL intervention reversed this phenomenon.UPM also triggered myocardial apoptosis,which was markedly attenuated by SL treatment.The results of in vitro experiments revealed that SL prevented cell damage caused by exposure to UPM combined with hypoxia by reducing the expression of the inflammatory factor NF-κB and inhibiting apoptosis in H9c2 cells.Conclusion Overall,both in vivo and in vitro experiments demonstrated that SL attenuated UPMaggravated myocardial ischemic injury by inhibiting inflammation and cell apoptosis.The mechanisms were related to the downregulation of macrophages infiltrating heart tissues.
基金supported by the KIST Institutional Program(No.2E31700-22-P005)the KRIBB Research Initiative Program(No.KGM5322422)+1 种基金the Technology Innovation Program(No.20008826)funded by the Ministry of Trade,Industry and Energy(MOTIE,Republic of Korea)the National Research Foundation of Korea(NRF)(No.2022R1A2C1091865)funded by the Ministry of Science and ICT(MSIT,Republic of Korea)。
文摘The risk of exposure to particulate matter(PM)has been consistently highlighted globally owing to its detrimental effects on the respiratory and cardiovascular systems and in the development of lung cancer.Additionally,PM promotes cancer cell metastasis;however,research elucidating the precise mechanisms underlying this phenomenon and the strategies to inhibit it remains limited.The aim of this study was to elucidate the mechanism underlying PM-induced cancer metastasis and investigate the preventive role of ginsenoside Rg3.We treated macrophages with PM and confirmed an increase in the expression and secretion of chemokines,such as CCL3,CCL4,and CCL5.This effect was mediated by the MAPK and NF-kB pathways,and Rg3 inhibited this process by suppressing chemokine expression.These chemokines regulate the expression of epithelial-mesenchymal transition(EMT)markers in cancer cells,including Snail,Slug,ZEB1,and E-cadherin.The regulated EMT markers increased the motility of cancer cells in vitro.Furthermore,an increase in CCL3,CCL4,and CCL5 in the bronchoalveolar lavage fluid(BALF)was confirmed in a PM inhalation mouse model,and Rg3 reduced PM-induced cancer metastasis.The study findings suggest the potential use of Rg3 as a therapeutic agent to prevent PM-induced cancer metastasis.
基金supported by the National Key Research and Development Program of China(Nos.2023YFC3709500,2023YFC3709502 and 2022YFC3703400)the National Natural Science Foundation of China(No.42077191)+1 种基金the Fundamental Research Funds for the Central Universities(No.63233054)Tianjin Science and Technology Plan Project(No.18PTZWHZ00120).
文摘Serious fine particulate matter(PM_(2.5))pollution and rapidly increasing of ground-level ozone(O_(3))concentrations are concern issues in China.To achieve the comprehensive control of PM_(2.5)-O_(3) composite air pollution,exploring the common sources of PM_(2.5) and VOCs is essential.However,previous researches most carried out either PM_(2.5) or VOCs source appointment.In this study,we applied the ensemble source apportionment method to explore the impacts of common sources on PM_(2.5)-VOCs.Subsequently,we obtained the ensemble source impacts on O_(3) combining the extracted VOCs source profile and ozone formation potential.We found that the focus of environmentalmanagement and source control should be varied accordingly for different pollutants.Vehicle emission was the largest contributor(41%)to PM_(2.5)-VOCs,while industrial emission was the main common source(51%)to O_(3).The result showed that the O_(3) production rate is not only related to the VOCs emission,but also to the reactivity of VOCs.In addition,sensitivity tests revealed that temperature was the main factor affecting O_(3) formation.The study provides a framework to explore the common sources impact on PM_(2.5) and VOCs,which is benefit to address both PM_(2.5) and O_(3) mitigations.
基金supported by the Innovative Talent Project of Lanzhou City,Lanzhou Science and Technology Bureau(2022-RC-42)the Fundamental Research Funds for the Central Universities,Lanzhou University,China(lzujbky-2021-ey07,lzujbky-2024-it59,lzujbky-2025-it29)the Gansu Province Postgraduate Innovation Star Program(2025CXZX-018).
文摘Objective Chronic obstructive pulmonary disease(COPD)is a major health concern in northwest China;however,the impact of particulate matter(PM)exposure during sand-dust storms(SDS)remains poorly understood.Therefore,this study aimed to investigate the association between PM exposure on SDS days and COPD hospitalization risk in arid regions.Methods Data on daily COPD hospitalizations were collected from 323 hospitals from 2018 to 2022,along with the corresponding air pollutant and meteorological data for each city in Gansu Province.Employing a space-time-stratified case-crossover design and conditional Poisson regression,we analyzed 265,379 COPD hospitalizations.Results PM exposure during SDS days significantly increased COPD hospitalization risk[relative risk(RR)for PM2.5,lag 3:1.028,95%confidence interval(CI):1.021–1.034],particularly among men and the elderly,and during the cold season.The burden of PM exposure on COPD hospitalization was substantially high in Northwest China,especially in the arid and semi-arid regions.Conclusion Our findings revealed a positive correlation between PM exposure during SDS episodes and elevated hospitalization rates for COPD in arid and semi-arid zones in China.This highlights the urgency of developing region-specific public health strategies to address adverse respiratory outcomes associated with SDS-related air quality deterioration.
基金Supported by the Taishan Scholar Project of Shandong Province (Nos.TS20190913,tsqn202211054)the Fundamental Research Funds for the Central Universities (No.202241007)the Youth Innovation Team Program in Colleges and Universities of Shandong Province (No.2022KJ045)
文摘Mesoscale eddies are widespread in the global ocean,significantly influencing the physical,chemical,and biological structures of water column.Based on the CTD data and suspended particulate matter(SPM)data collected at 36 hydrographic stations during a field cruise in southern Mozambique Channel,combined with satellite altimeter observations,we identified a series of mesoscale eddies traversing the Mozambique Channel.Our hydrographic measurements,coupled with in situ chlorophyll fluorescence data,reveal that these eddies significantly influence thermohaline structure and chlorophyll distribution,which in turn affects primary productivity and SPM concentrations in the upper ocean.The cyclonic eddies facilitate the upwelling of cold subsurface water,leading to a shallowing of the pycnocline and the creation of a low-temperature anomaly with variable salinity anomalies at different depths.Conversely,anticyclonic eddies submerge warm surface water,deepening the pycnocline,and resulting in a high-temperature anomaly accompanied by distinct salinity patterns.Significantly,a coastal anticyclonic eddy was observed to intercept terrestrial material from the Delagoa Bight,redirecting it west of 36°E.This study presents unique and quasi-synchronous CTD datasets capturing mesoscale eddy impacts,and provided valuable insights into SPM variability within the often-neglected southern Mozambique Channel.
基金supported by the institutional fund MLP004 and Science and Engineering Research Board(SERB)(No.CRG/2021/002625)financial assistance from DBT-JRF,Department of Biotechnology,Gov of India,New Delhi India(DBT/2018/1111)。
文摘Air pollution is fourth major cause of death worldwide.Recent evidence suggests that particulate matter(PM)may affect kidneys,and the effect may be size and composition dependent.In this study,PM_(0.1),PM_(2.5),and PM_(10)were collected from ambient air and given to BALB/c male mice at 0.25 mg/m^(3) concentration in whole-body inhalation chamber for 28days(6 h/day,5 days/week)to assess their effect on kidney.Physico-chemical characterization of PM particles by SEM,ICP-MS and HPLC showed their various shapes along with the presence of metals and poly aromatic hydrocarbons(PAHs).Following PM exposure,increased serum creatinine levels were observed in animals along with dilated tubules,protein cast deposition,necrosis,immune infiltration,collagen deposition,and shrunken glomeruli in kidney.Immunofluorescence staining showed higher expressions of kidney injury molecule1(KIM-1),cystatin C,β2 microglobulin(β2M),and alpha smooth muscle actin(α-SMA)and fibronectin,suggesting renal injury and fibrosis.PM exposure also increased malondialdehyde(MDA)content and decreased superoxide dismutase 2(SOD2)activity,which in turn leads to induction of inflammation.Mechanistically,PM exposure further inhibited the nuclear factor erythroid 2-related factor 2(Nrf2)signalling and induced kelch-like ECH-associated protein 1(Keap1)and nuclear factor kappa-light-chain-enhancer of activated B(NF-κB).Interestingly,the effect of PM_(2.5)was more severe than PM_(0.1)and PM_(10),leading to higher levels of proinflammatory NF-κB and greater Nrf2 inhibition.Overall,our findings suggested that inhalation exposure to size-segregated PM can cause kidney damage and fibrosis,and PM_(2.5)showed higher toxicity than PM_(0.1)and PM_(10).
基金supported by the National Natural Science Foundation of China(No.52274344)the Provincial Natural Science Foundation of Hunan(Nos.2022JJ30723 and 2023JJ20068)the Science and Technology Innovation Program of Hunan Province(2023RC3042).
文摘Controlling the adhesion of potentially corrosive substances from flue gas on grate bar is crucial for extending the operational lifespan of the equipment.The adhesive behaviour and mechanism of ultrafine particulate matters(UPM)throughout the sintering process were elucidated,and measures to control adhesion on grate bars were developed.Research findings indicated that a small quantity of UPM were found on grate bar during the initial sintering stages(ignition stage and middle stageⅠandⅡ).The main compositions of UPM were FexOy-rich,CaO-rich,and aluminium silicate-rich particles.In contrast,corrosive substances like alkali metal compounds were almost absent.These UPM adhered onto grate bar primarily through inertial impaction.When moving to the final sintering stages(middle stageⅢand temperature rising stage),many UPM rich in corrosive substances like NaCl and KCl adhered to the grate bar.These UPM adhered to grate bar through thermal diffusion and vortex deposition.Solid waste water washing technology can greatly decrease the quantity of UPM(rich in NaCl and KCl)on the grate bar due to vortex deposition and thermal diffusion,and it represents a potentially promising way to control adhesion and corrosion on grate bars.
基金supported by the National Natural Science Foundation of China(No.82303169)the Key Research and Development Program of Shaanxi(No.2021ZDLSF02-06).
文摘Objective Several epidemiological observational studies have related particulate matter(PM)exposure to Inflammatory bowel disease(IBD),but many confounding factors make it difficult to draw causal links from observational studies.The objective of this study was to explore the causal association between PM_(2.5)exposure,its absorbance,and IBD.Methods We assessed the association of PM_(2.5)and PM_(2.5)absorbance with the two primary forms of IBD(Crohn’s disease[CD]and ulcerative colitis[UC])using Mendelian randomization(MR)to explore the causal relationship.We conducted two-sample MR analyses with aggregated data from the UK Biobank genome-wide association study.Single-nucleotide polymorphisms linked with PM_(2.5)concentrations or their absorbance were used as instrumental variables(IVs).We used inverse variance weighting(IVW)as the primary analytical approach and four other standard methods as supplementary analyses for quality control.Results The results of MR demonstrated that PM_(2.5)had an adverse influence on UC risk(odds ratio[OR]=1.010;95%confidence interval[CI]=1.001–1.019,P=0.020).Meanwhile,the results of IVW showed that PM_(2.5)absorbance was also causally associated with UC(OR=1.012;95%CI=1.004–1.019,P=0.002).We observed no causal relationship between PM_(2.5),PM_(2.5)absorbance,and CD.The results of sensitivity analysis indicated the absence of heterogeneity or pleiotropy,ensuring the reliability of MR results.Conclusion Based on two-sample MR analyses,there are potential positive causal relationships between PM_(2.5),PM_(2.5)absorbance,and UC.
基金supported by grants from the National Key Research and Development Program of China(No.2023YFC2705700)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515012355)+1 种基金the Shenzhen Science and Technology Program(No.JCYJ20220530140609020)the Scientific Research Project of Wuhan Municipal Health Commission(No.WX21Q36).
文摘Objective The effects of prolonged exposure to persistently elevated atmospheric pollutants,commonly termed air pollution waves,on fertility intentions remain inadequately understood.This study aims to investigate the association between particulate matter(PM)exposure and fertility intentions.Methods In this nationwide cross-sectional study,we analyzed data from 10,747 participants(5496 females and 5251 males).PM waves were defined as periods lasting 3‒6 consecutive days during which the daily average concentrations exceeded China’s Ambient Air Quality Standards Grade II thresholds(PM2.5>75μg/m3 and PM10>150μg/m3).We employed multivariate logistic regression models to assess the association between exposure to PM waves and fertility intentions.Results Significant inverse associations were detected between exposure to PM2.5 wave events(characterized by concentrations exceeding 75μg/m3 for durations of 4‒6 days,P<0.05)and PM10 wave events(defined as concentrations exceeding 150μg/m3 for 6 consecutive days,P<0.05)and fertility intentions among females.In contrast,neither the PM2.5 wave nor the PM10 wave events demonstrated statistically significant correlations with fertility intentions in males(P>0.05 for all comparisons).The potentially susceptible subgroup was identified as females aged 20–30 years.Conclusions Our results provide the first evidence that PM2.5 and PM10 waves are associated with a reduction in female fertility intentions,offering critical insights for the development of public health policies and strategies aimed at individual protection.
基金Project supported by the Key Agricultural Projects of Ningbo Science and Technology Bureau of Zhejiang Province(No.2013C11008),China
文摘This study was conducted to investigate the effects of fresh fermented soybean meal(FSM) on the growth performance of nursery piglets, nitrogen excretion in feces, and the concentrations of ammonia(NH3) and particulate matter(PM) in the piggery. A total of 472 nursery piglets(Landrace×Yorkshire,(16.3±0.36) kg body weight) were randomly allocated into two treatments with 236 pigs in each treatment. The pigs were fed the basal diet without fresh FSM(control) or diet containing 10%(100 g/kg) fresh FSM(FSM group), and the crude protein content of the two groups was consistent. The feeding trial lasted for 28 d. The results showed that the pigs fed fresh FSM had increased(P〈0.05) average daily gain(ADG) compared with the control. There was no significant difference(P〈0.05) in feed to gain ratio(F:G) between the two groups. During the whole experiment, the concentration of NH3 in the piggery decreased(P〈0.05) by 19.0%, and the concentrations of PM(PM(10) and PM(2.5)) in the piggery decreased(P〈0.05) by 19.9% and 11.6%, respectively, in the FSM group, compared with the control. The ammonia nitrogen and nitrite content in feces increased(P〈0.05) by 32.9% and 28.4%, respectively, in the FSM group. The fecal p H declined(P〈0.05) significantly in the FSM group compared with the control. At the end of experiment, total protein(TP) concentration was increased(P〈0.05) significantly and blood urea nitrogen(BUN) concentration was decreased(P〈0.05) for pigs fed the diet with fresh FSM. The results indicated that dietary fresh FSM not only improved the growth performance of nursery piglets, but also reduced the NH3 concentration in the piggery due to nitrogen conversion, and decreased the concentrations of PM(10) and PM(2.5) in the piggery.
基金supported by the National Special Project for Commonweal Industry in China (No. GY-HY201006023,GYHY201106034)the National Support Projects for Science and Technology in China (No.2009BAC53B02)+2 种基金the Project of National Natural Science Foundation of China (No. 41075103)the Application and Foundation Research Program of Sichuan Province (No.2009JY0116)the Project of the Scientific Research Foundation of CUIT (No. KYTZ201008)
文摘The formation and development of weather events has a great impact on the diffusion, accumulation and transport of air pollutants, and causes great changes in the particulate pollution level. It is very important to study their influence on particulate pollution. Lanzhou is one of the most particulate-polluted cities in China and even in the world. Particulate matter (PM) including TSP, PM〉10, PMzs-10, PM2.5 and PM1.0 concentrations were simultaneously measured during 2005-2007 in Lanzhou to evaluate the influence of three kinds of weather events - dost, precipitation and cold front - on the concentrations of PM with different sizes and detect the temporal evolution. The main results are as follows: (1) the PM pollution in Lanzhou during dust events was very heavy and the rate of increase in the concentration of PM2.5-10 was the highest of the five kinds of particles. During dust-storm events, the highest peaks of the concentrations of fine particles (PM2.5 and PM1.0) occurred 3 hr later than those of coarse particles (PM〉10 and PM/.5-10). (2) The major effect of precipitation events on PM is wet scavenging. The scavenging rates of particles were closely associated with the kinds of precipitation events. The scavenging rates of TSP, PM〉10 and PMa.5-10 by convective precipitation were several times as high as those caused by frontal precipitation for the same precipitation amount, the reason being the different formation mechanism and precipitation characteristics of the two kinds of precipitation. Moreover, there exists a limiting value for the scavenging rates of particles by precipitation. (3) The major effect of cold-front events on particles is clearance. However, during cold-front passages, the PM concentrations could sometimes rise first and decrease afterwards, which is the critical difference in the influence of cold fronts on the concentrations of particulate pollutants vs. gaseous pollutants.
基金financially supported by the Fundamental Research Funds for the central University,China University of Geosciences(Wuhan)(No.CUG150602)the International collaboration project funded by the China University of Geosciences(Wuhan)
文摘The presence of heavy metals(HMs) in particulate matters(PMs) particularly fine particles such as PM2.5 poses potential risk to the health of human being. The purpose of this study was to analyze the contents of HMs in PM2.5 in the atmospheric monitoring stations in Isfahan city,Iran, in different seasons between March 2014 and March 2015 and their source identification using principle component analysis(PCA). The samples of PM2.5 were taken using a high volume sampler in 7 monitoring stations located throughout the city and industrial zones since March 2014 to March 2015. The HMs content of the samples was measured using ICP-MS.The results showed that the concentrations of As, Cd and Ni were in a range of 23–36, 1–12,and 5–76 ng/m3 at all the stations which exceeded the US-EPA standards. Furthermore,the concentrations of Cr and Cu reached to 153 and 167 ng/m3 in some stations which were also higher than the standard levels. Depending on the potential sources of HMs, their concentration in PM2.5 through the various seasons was different. PCA illustrated that the different potential sources of HMs in the atmosphere, showing that the most important sources of HMs originated from fossil fuel combustion, abrasion of vehicle tires, industrial activities(e.g., iron and steel industries) and dust storms. Management and control of air pollution of industrial plants and vehicles are suggested for decreasing the risk of the HMs in the region.
基金supported by the National Science & Technology Major Project of China (No. 2009ZX07209004)the National Basic Research Program (973) of China (No. 2007CB407304)
文摘Sediment resuspension plays an important role in the transport and fate of heavy metals in the aquatic environment. In the present study, the release and binding forms of Cr, Cu, Zn, Pb under hydrodynamic conditions were investigated using an annular flume. Two sediments located at YLZ and GBD from Liangshui River, Beijing were resuspended for 10 hr at 0.159 and 0.267 m/see, respectively. The concentrations of suspended particulate matters of YLZ were higher than those of GBD during resuspension, indicating that the former sediment is more sensitive to the velocity. Cr in the dissolved phase stayed nearly constant at about 2.25 and 1.84 I^g/L for YLZ and GBD, respectively, due to the high percentage of its stable binding fractions in both sediments, while Cu, Zn, and Pb showed a fast release in the initial period of time. However, their concentrations in SPM generally decreased with time and were higher at the lower velocity of 0.159 m/see, which resulted from the entrainment and depressing effect of larger size particles with lower heavy metal content, commonly referred to as the "particle concentration effect". In addition, the binding form and heavy metal fractions were also found to vary during the resuspension event. A decrease in the sulphide/organic matters bounded form in GBD sediment was observed, whereas no visible changes were perceived in YLZ site samples. This phenomenon is due to the oxidation of heavy metal-sulphide binding forms, which originated from its high acid volatile sulphide content in GBD sediment.
基金supported by the National Natural Science Foundation of China (No. 41205093)the National Department Public Benefit Research Foundation (No. 201109005)+1 种基金the Fundamental Research Funds for Central Public Welfare Scientific Research Institutes of China (No. 2016YSKY-025)National Research Program for Key Issues in Air Pollution Control (No. DQGG0304)
文摘In order to understand the size distribution and the main kind of heavy metals in particulate matter on the lead and zinc smelting affected area, particulate matter (PM) and the source samples were collected in Zhuzhou, Hunan Province from December 2011 to January 2012 and the results were discussed and interpreted. Atmospheric particles were collected with different sizes by a cascade impactor. The concentrations of heavy metals in atmospheric particles of different sizes, collected from the air and from factories, were measured using an inductively coupled plasma mass spectrometry (ICP-MS). The results indicated that the average concentration of PM, chromium (Cr), arsenic (As), cadmium (Cd) and lead (Pb) in PM was 177.3 ± 33.2 μg/m^3, 37.3 ± 8.8 ng/m^3, 17.3 ± 8.1 ng/m^3, 4.8 ± 3.1 ng/m^3 and 141.6 ± 49.1 ng/m^3, respectively. The size distribution of PM displayed a bimodal distribution; the maximum PM size distribution was at 1.1-2.1 μm, followed by 9-10 μm. The size distribution of As, cd and Pb in PM was similar to the distribution of the PM mass, with peaks observed at the range of 1.1-2.1 μm and 9-10 μm ranges while for Cr, only a single-mode at 4.7-5.8 μm was observed. PM (64.7%, As (72.5%), cd (72.2%) and Pb (75.8%) were associated with the fine mode below 2.1 μm, respectively, while Cr (46.6%) was associated with the coarse mode. The size distribution characteristics, enrichment factor, correlation coefficient values, source information and the analysis of source samples showed that As, Cd and Pb in PM were the typical heavy metal in lead and zinc smelting affected areas, which originated mainly from lead and zinc smelting sources.
文摘During October 1993 and March 1996, the samples of fine and coarse air particulate matter have been collected at representative urban and rural site of Beijing with the Gent Stacked Filter Unit Sampler. Instrumental neutron activation analysis (INAA) and proton induced X ray emission (PIXE) method were used to determine the elemental composition of the particulate matter. Average elemental concentrations and enrichment factors were calculated for the fine and coarse size fractions. Based on the particulate matter data obtained at urban and rural site together with the chemical constituents of the aerosol from the different sources are discussed. The results show that the relative particulate mass and elemental concentrations of crustal and pollutant elements in the air particulate matter collected over the urban are higher than rural and winter heating period are higher than in ordinary season. Beijing atmosphere is polluted by aerosols from regional and faraway sources. It was noticed that the toxic or harmful elements such as As, Sb, Pb, Cu, Ni, S and Zn were mainly enriched in fine particles with diameter less than 2 μm. A receptor model was used to assess the relative contribution of major air pollution sources at receptor sites in Beijing. Trace elements were used as the markers for the above assessment. Factor analysis method was used to identify possible emission sources of air particles. The major sources of dust soil, coal burning, motor vehicle emission, industry emission and refuse incineration were identified.
基金supported financially by the National Natural Science Foundation of China(40525016)the National Basic Research Program(2007CB407303 and 2006CB403702)
文摘Total suspended particulates (TSP) samples were collected using low pressure impactors (Andersen Series 20-800, USA) on typical clear, hazy and foggy days in Beijing in order to investigate the characteristics of size distributions and elemental compositions of particulate matter (PM) in different weather conditions. The concentrations of sixteen elements, including Na, Mg, Al, K, Ca, Mn, Fe, Ni, Cu, Zn, As, Se, Cd, Ba, T1 and Pb were detected using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that Ca, A1, Fe, Mg and Ba on foggy days were 2.0 2.6 times higher than on clear days, and 2.3-2.9 times higher than on hazy days. Concentrations of Cu, Zn, As, Se and Pb on foggy days were 163.5, 1186.7, 65.9, 32.0 and 708.2 ng m-3, respectively, in fine particles, and 68.1, 289.5, 19.8, 1.6 and 103.8 ng m-3, respectively, in coarse particles. This was 1.0~8.4 times higher and 1.4-7.4 times higher than on clear and hazy days, respectively. It is then shown that Mg, A1, Fe, Ca and Ba were mainly associated with coarse particles, peaking at 4.7~5.8 μm; that Cd, Se, Zn, As, T1 and Pb were most dominant in fine particles, peaking at 0.43-1.1 μm; and that Na, K, Ni, Cu and Mn had a multi-mode distribution, with peaks at 0.43-1.1 μm and 4.7-5.8 μm. The enrichment factors indicated that coal combustion along with vehicle and industry emissions may be the main sources of pollution elements.
文摘The present study was designed to alert the public opinion and policy makers on the supposed enhancing effects of exposure to ambient air particulate matter with aerodynamic diameters < 2.5 mm (PM 2.5 ) on non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disease in Western countries. For far too long literature data have been fixated on pulmonary diseases and/or cardiovascular disease, as consequence of particulate exposure, ignoring the link between the explosion of obesity with related syndromes such as NAFLD and air pollution, the worst characteristics of nowadays civilization. In order to delineate a clear picture of this major health problem, further studies should investigate whether and at what extent cigarette smoking and exposure to ambient air PM 2.5 impact the natural history of patients with obesity-related NAFLD,i.e. , development of non alcoholic steatohepatitis, disease characterized by a worse prognosis due its progression towards fibrosis and hepatocarcinoma.