期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Investigation into the degradation of 2,4,6-trichlorophenol utilizing a three-dimensional electrocatalytic reactor filled with fluorine-doped copper-carbon particle electrodes
1
作者 Hongrui Zhang Wenyu Huang +4 位作者 Hainong Song Hanhui Yan Jia Zhang Fang Zhong Huilan Li 《Journal of Environmental Sciences》 2025年第9期701-719,共19页
The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated cata... The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP. 展开更多
关键词 2 4 6-TRICHLOROPHENOL Heterogeneous Fenton-like process Three-dimensional electrocatalytic reactor Three-dimensional particle electrode system Fluorine-doped copper-carbon particle electrodes
原文传递
Efficient three-dimensional electrochemical degradation of alizarin red by CeO_(2)−MnO_(2)/NF particle electrode synergized with ozone
2
作者 Ke Hu Fangyuan Zhao +3 位作者 Faqin Dong Xingyu Zhang Lin Zhou Ming Guo 《Journal of Environmental Sciences》 2025年第8期365-377,共13页
In this study,nickel foam-loaded Mn and Ce bimetallic oxide composites were successfully synthesized as particle electrodes by a hydrothermal method and synergized with ozone for the efficient degradation of alizarin ... In this study,nickel foam-loaded Mn and Ce bimetallic oxide composites were successfully synthesized as particle electrodes by a hydrothermal method and synergized with ozone for the efficient degradation of alizarin red(AR),a typical anthraquinone dye.The effects of common factors on the degradation rate of alizarin red were investigated.The optimal experimental conditions were derived as applied voltage=3.5 V,initial pH=5.5,NaCl concentration of 4.5 g/L,and initial dye concentration of 20 mg/L.The particle electrode had a high cyclic stability after five cycles.The active sites of the dye molecular structure were analyzed in combination with the Fukui function,and the degradation pathway of alizarin red was proposed on this basis.By comparing the degradation effect of alizarin red under three different systems of O3,3DER and 3DER-O3,it was confirmed that the three-dimensional electrode has a good synergistic effect in conjunction with ozone.Finally,the degradation mechanism of alizarin red under the CeO_(2)-MnO_(2)/NF synergistic ozone system was derived,in which the single linear oxygen(1O_(2))played a major role in the degradation process. 展开更多
关键词 particle electrode Anthraquinone dye Synergistic effect Degradation mechanism Fukui
原文传递
Decomplexation of Cu-1-hydroxyethylidene-1,1-diphosphonic acid by a three-dimensional electrolysis system with activated biochar as particle electrodes 被引量:1
3
作者 Xing Wang Zilong Zhao +2 位作者 Hongjie Wang Feng Wang Wenyi Dong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第2期630-643,共14页
The feasibility of decomplexation removal of typical contaminants in electroplating wastewater,complexed Cu(Ⅱ)with 1-hydroxyethylidene-1,1-diphosphonic acid(Cu-HEDP),was first performed by a three-dimensional electro... The feasibility of decomplexation removal of typical contaminants in electroplating wastewater,complexed Cu(Ⅱ)with 1-hydroxyethylidene-1,1-diphosphonic acid(Cu-HEDP),was first performed by a three-dimensional electrode reactor with activated biochar as particle electrodes.For the case of 50 mg/L Cu-HEDP,Cu(Ⅱ)removal(90.7%)and PO_(4)^(3−)conversion(34.9%)were achieved under the conditions of electric current 40 mA,initial pH 7,acid-treated almond shell biochar(AASB)addition 20 g/L,and reaction time 180 min,with second-order rate constants of 1.10×10^(−3) and 1.94×10^(−5) min^(−1) respectively.The growing chelating effect between Cu(II)and HEDP and the comprehensive actions of adsorptive accumulation,direct and indirect oxidation given by particle electrodes accounted for the enhanced removal of Cu-HEDP,even though the mineralization of HEDP was mainly dependent on anode oxidation.The performance attenuation of AASB particle electrodes was ascribed to the excessive consumption of oxygen-containing functionalities during the reaction,especially acidic carboxylic groups and quinones on particle electrodes,which decreased from 446.74 to 291.48μmol/g,and 377.55 to 247.71μmol/g,respectively.Based on the determination of adsorption behavior and indirect electrochemical oxidation mediated by in situ electrogenerated H_(2)O_(2) and reactive oxygen species(e.g.,•OH),a possible removal mechanism of Cu-HEDP by three-dimensional electrolysis was further proposed. 展开更多
关键词 Cu-HEDP Electrochemical oxidation particle electrode Reaction characteristics Removal mechanism
原文传递
The use of carbon-based particle electrodes in three-dimensional electrode reactors for wastewater treatment 被引量:1
4
作者 LU Hua-yu LIU Wei-feng +1 位作者 QIN Lei LIU Xu-guang 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期973-991,共19页
The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research... The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed. 展开更多
关键词 Environmental pollution Three-dimensional electrode technology Carbon-based materials Carbon-based particle electrode
在线阅读 下载PDF
Metal oxide particle electrodes for degradation of high concentration phenol wastewater via electrocatalytic advanced oxidation
5
作者 Baowei Wang Yi Liao Tingting Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第11期204-213,共10页
High-concentration phenol wastewater is pollutant of concern that pose significant risks to human health and the environment.Three-dimensional electrocatalytic oxidation is one of the most promising wastewater treatme... High-concentration phenol wastewater is pollutant of concern that pose significant risks to human health and the environment.Three-dimensional electrocatalytic oxidation is one of the most promising wastewater treatment technologies because of its high treatment efficiency,low energy consumption and low secondary pollution.Lower-cost and higher-performance particles still faces great challenges.In this work,metal oxide particle electrodes were prepared using granular activated carbon(GAC)as a substrate to study the degradation of phenol by three-dimensional electrocatalytic oxidation.GAC particle electrodes loaded with different monometallic oxides(Mn,Fe,Co,Ce)and bimetallic oxides(Fe and Ce)were prepared by the impregnation method.The effectiveness of the particle electrodes in degrading phenol was greatly improved after active components loading.Among all monometallic oxide particle electrodes,the concentration degradation efficiency was in the order of Ce/GAC>Co/GAC>Mn/GAC>Fe/GAC,and the COD degradation efficiency was Ce/GAC>Fe/GAC>Co/GAC>Mn/GAC.After optimizing the loading metal type and loading amount,it was found that the 1.1%Fe-2.7%Ce/GAC particle electrode perform the best,with a phenol degradation efficiency of 95.48%,a COD degradation rate of 94.35%,an energy consumption of 0.75 kW·h·kg^(-1)COD.This lower-cost and higher-performance particle highlights a reliable route for solving the problem of particle electrode materials limiting the efficient treatment of phenol-containing wastewater. 展开更多
关键词 Phenol degradation Electrocatalytic oxidation Three-dimensional electrochemical particle electrode Advanced oxidation
在线阅读 下载PDF
Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors 被引量:6
6
作者 Yuwei Zhang Zhansheng Guo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第4期706-715,共10页
Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithiumion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evo... Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithiumion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evolution, and damage mechanics to simulate the growth of central cracks in cathode particles(Li Mn_2 O_4) by an extended finite element method by considering the influence of multiple factors. The simulation shows that particles are likely to crack at a high discharge rate, when the particle radius is large, or when the initial central crack is longer. It also shows that the maximum principal tensile stress decreases and cracking becomes more difficult when the influence of crack surface diffusion is considered. The fracturing process occurs according to the following stages: no crack growth, stable crack growth, and unstable crack growth. Changing the charge/discharge strategy before unstable crack growth sets in is beneficial to prevent further capacity fading during electrochemical cycling. 展开更多
关键词 Li-ion battery Active particle of electrodes Central crack and growth Extended finite element method Crack surface diffusion
在线阅读 下载PDF
Continuous Separation of Multiple Size Microparticles using Alternating Current Dielectrophoresis in Microfluidic Device with Acupuncture Needle Electrodes 被引量:3
7
作者 TAO Ye REN Yukun +1 位作者 YAN Hui JIANG Hongyuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期325-331,共7页
The need to continuously separate multiple microparticles is required for the recent development of lab-on-chip technology. Dielectrophoresis(DEP)-based separation device is extensively used in kinds of microfluidic... The need to continuously separate multiple microparticles is required for the recent development of lab-on-chip technology. Dielectrophoresis(DEP)-based separation device is extensively used in kinds of microfluidic applications. However, such conventional DEP-based device is relatively complicated and difficult for fabrication. A concise microfluidic device is presented for effective continuous separation of multiple size particle mixtures. A pair of acupuncture needle electrodes are creatively employed and embedded in a PDMS(poly-dimethylsiloxane) hurdle for generating non-uniform electric field thereby achieving a continuous DEP separation. The separation mechanism is that the incoming particle samples with different sizes experience different negative DEP(n DEP) forces and then they can be transported into different downstream outlets. The DEP characterizations of particles are calculated, and their trajectories are numerically predicted by considering the combined action of the incoming laminar flow and the n DEP force field for guiding the separation experiments. The device performance is verified by successfully separating a three-sized particle mixture, including polystyrene microspheres with diameters of 3 μm, 10 μm and 25 μm. The separation purity is below 70% when the flow rate ratio is less than 3.5 or more than 5.1, while the separation purity can be up to more than 90% when the flow rate ratio is between 3.5 and 5.1 and meanwhile ensure the voltage output falls in between 120 V and 150 V. Such simple DEP-based separation device has extensive applications in future microfluidic systems. 展开更多
关键词 continuous separation of multiple size particles dielectrophoresis acupuncture needle electrodes microfluidic
在线阅读 下载PDF
Sensitization of Microporous Nanocrystalline TiO_2 Electrode with Quantum Sized RuS2 Particles
8
作者 Jing Huai FANG Lian Yong SU +2 位作者 Jing Wen Uny Xiang Yang ZHANG Zuhng LU(National Laboratory of Molecular and Biomolecular Electronics.Sollhleast University. Nanjing 210096) 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第5期437-438,共2页
The microporous nanocry'sta1line TiO2 electrode with large surface roughness factor hasbeen prepared on a conducting glass support. Modification of the TiO2 electrode by in situ preparingquantum sized RuS2 particl... The microporous nanocry'sta1line TiO2 electrode with large surface roughness factor hasbeen prepared on a conducting glass support. Modification of the TiO2 electrode by in situ preparingquantum sized RuS2 particles on the surface of TiO2 electrode extends the optical absorptionspectrum and photocurrent action specmim into visible region. In addition, compared with RuS2 bulknlaterials- a blue shifi in both absorption spectrum and photocurrent action speCtrum of RuS2rriO2elcctrode is obserived and explained in terms of quantum sized effect. 展开更多
关键词 TIO Sensitization of Microporous Nanocrystalline TiO2 electrode with Quantum Sized RuS2 particles
在线阅读 下载PDF
Degradation of leachate and high concentration emerging pollutant tetracycline through electro oxidation
9
作者 Siyi Li Qiaona Xie +3 位作者 Mingdi Yang Ningrui Wu Yiting Lian Chengran Fang 《Journal of Environmental Sciences》 2026年第1期142-153,共12页
In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti... In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti-mization,for the degradation of landfill leachate(LL)containing elevated levels of tetracycline(TC),and explored its mechanism of action.Firstly,titanium-based ruthenium-iridium(Ti/RuO_(2)-IrO_(2)),titanium-based ruthenium-iridium-platinum(Ti/Pt-RuO_(2)-IrO_(2)),and titanium-based tin-antimony(Ti/SnO_(2)-Sb_(2)O_(3))were employed as an-odes in the electrocatalytic oxidation system,with titanium and stainless steel plates serving as cathodes,to construct the optimal two-dimensional electrocatalytic oxidation system(2D-ECO)through cross-comparison ex-periments.Subsequently,using granular activated carbon(GAC),coconut shell biochar(CBC),walnut shell carbon(WBC),and bamboo charcoal(BBC)as particle electrodes,a 3D-ECO system was developed.The influence of var-ious operational parameters on treating TC-containing LL was investigated.The optimal operating parameters obtained from the study was:pH=5,current density of 30 mA/cm^(2),particle dosage of 7 g/L,particle size ranging from 1.70 to 2.00 mm,and electrode spacing of 4 cm.Under these conditions,the COD removal rate of 3D-ECO within three hours was 90.25%,the TC removal rate was 72.41%,and the NH_(3)-N removal rate was 39.52%.The removal of TC followed a pseudo-first-order kinetic model.Additionally,degradation mechanisms were elucidated through electron paramagnetic resonance(EPR)spectrometer and Tert-Butanol(TBA)quenching experiments,indicating that the degradation primarily occurred through a non-radical(1O_(2))pathway.This re-search offers a comprehensive analysis of the simultaneous breakdown of intricate LL matrices and TC,enhancing our comprehension of the degradation processes and underlying mechanisms. 展开更多
关键词 particle electrodes TETRACYCLINE Landfill leachate Three-dimensional electrocatalytic oxidation Degradation mechanism
原文传递
Study on Distribution of Electrocatalytic Reaction Efficiency in a Three-Dimensional Electrocatalytic Reactor 被引量:1
10
作者 Lu Kaitian Zhang Yonggang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第3期30-39,共10页
In order to explore the effect of particle position on the electrocatalytic reaction rate at different positions in three-dimensional electrocatalytic reactor,using methylene blue as the simulated organic wastewater,a... In order to explore the effect of particle position on the electrocatalytic reaction rate at different positions in three-dimensional electrocatalytic reactor,using methylene blue as the simulated organic wastewater,and spherical graphite particles as the particle electrode,the potential distribution in three-dimensional electrocatalytic reactor was simulated by using COMSOL Multiphysics software.A multivariate logarithmic regression model of reaction kinetic constant and position was established by mathematical statistics.The electrocatalytic reaction rates were predicted at different locations in the reactor.The results show that the degradation ability of particle electrode to pollutants is uneven in the electrocatalytic reactor.The increase of electric field intensity and particle size will improve the difference of reaction rate.The closer the particle electrode is to the anode,the stronger the pollutant degradation ability would be.The reaction rate of the same particle electrode at different locations varies greatly,which can be roughly divided into three regions according to the degree of difference,among which the central region of the particle has the highest electrocatalytic reaction efficiency. 展开更多
关键词 particle electrode COMSOL multiphysics electrocatalytic efficiency logarithmic regression model
在线阅读 下载PDF
Three-dimensional electrochemical system(3DES)for coking wastewater treatment:a comprehensive review
11
作者 Zhenyu Wu Juan Xu Wenping Cao 《Frontiers of Environmental Science & Engineering》 2025年第9期83-101,共19页
Coking wastewater is complex and highly toxic,with conventional treatment technologies often struggling with low degradation efficiency,long treatment durations,high costs,and limited resilience to variable wastewater... Coking wastewater is complex and highly toxic,with conventional treatment technologies often struggling with low degradation efficiency,long treatment durations,high costs,and limited resilience to variable wastewater characteristics.Three-dimensional electrochemical system(3DES)has emerged as a promising alternative for treating coking wastewater.By incorporating particle electrodes,3DES expands the reaction surface area,enhancing mass transfer and improving pollutant degradation efficiency.Although previous studies have focused on the treatment performance of 3DES,a comprehensive analysis covering its mechanisms,electrode materials,operational parameters,and hybrid treatment strategies for coking wastewater treatment is still lacking.This review aims to fill that gap by systematically examining the advantages of 3DES in improving degradation efficiency,enhancing biodegradability through electrochemical-microbial interactions,and addressing current limitations.Additionally,it highlights future research directions,including optimizing particle electrode materials,exploring underlying mechanisms,developing kinetics models,and scaling up industrial applications.This review offers valuable insights into the sustainable and effective treatment of industrial wastewater from the coking industry. 展开更多
关键词 Three-dimensional electrochemical system(3DES) Coking wastewater particle electrode Industrial wastewater treatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部