The local time dependence of the geomagnetic disturbances during magnetic storms indicates the necessity of forecasting the localized magnetic storm indices.For the first time,we construct prediction models for the Su...The local time dependence of the geomagnetic disturbances during magnetic storms indicates the necessity of forecasting the localized magnetic storm indices.For the first time,we construct prediction models for the SuperMAG partial ring current indices(SMR-LT),with the advance time increasing from 1 h to 12 h by Long Short-Term Memory(LSTM)neural network.Generally,the prediction performance decreases with the advance time and is better for the SMR-06 index than for the SMR-00,SMR-12,and SMR-18 index.For the predictions with 12 h ahead,the correlation coefficient is 0.738,0.608,0.665,and 0.613,respectively.To avoid the over-represented effect of massive data during geomagnetic quiet periods,only the data during magnetic storms are used to train and test our models,and the improvement in prediction metrics increases with the advance time.For example,for predicting the storm-time SMR-06 index with 12 h ahead,the correlation coefficient and the prediction efficiency increases from 0.674 to 0.691,and from 0.349 to 0.455,respectively.The evaluation of the model performance for forecasting the storm intensity shows that the relative error for intense storms is usually less than the relative error for moderate storms.展开更多
The Substorm Current Wedge (SCW) occurrence in the late growth and onset phases of substorms was proposed as the current system which disrupts cross-tail current by diverting it to the ionosphere. The closure curren...The Substorm Current Wedge (SCW) occurrence in the late growth and onset phases of substorms was proposed as the current system which disrupts cross-tail current by diverting it to the ionosphere. The closure current for the SCW originally was suggested to be the strong westward auroral electrojet (WEJ). However, the SCW-WEJ system has no viable generator current. Similarly, the asymmetric or Partial Ring Current (PRC) increases in strength during the growth phase, and is sometimes associated with an enhanced Region 2 field-aligned current (FAC) closing to the ionosphere, but specifics of that closure have been lacking. Here we present a tmifying picture which includes the SCW post- and pre-midnight (AM and PM, respectively) currents and a generator current in the midnight portion of the PRC system, with these currents based upon a model of the nightside magnetotail magnetic geometry. That geometry consists of open north and south lobe regions surrounding a plasmasheet with two types of closed field line regions-stretched lines in the central part of the plasmasheet (SPS) and dipolar lines (DPS) between the low lati- tude boundary layer (LLBL) regions and the SPS. There is also an important plasmasheet transition region (TPS) in which the dipolar field near the plasmapause gradually transforms to stretched lines near the earthward edge of the SPS, and in which the midnight part of the PRC flows. We propose that our proposed near-onset current system consists of a central current which be- comes part of the midnight sector PRC and which is the generator, to which are linked two three-part current systems, one on the dawnside and one on the duskside. The three-part systems consist of up and down FACs closing as Pedersen currents in the iono- sphere. These 3-part systems are not activated until near-onset is reached, because of a lack of ionospheric conductivity in the appropriate locations where the Pedersen current closure occurs. The initial downward FAC of the 3-part dawnside system and the final upward FAC of the 3-part duskside system correspond to the AM and PM current segments, respectively, of the originally proposed SCW.展开更多
基金Supported by National Natural Science Foundation of China grants(42022032,41874203,42188101)project of Civil Aerospace"13 th Five Year Plan"Preliminary Research in Space Science(D020301,D030202),Strategic Priority Research Program of CAS(XDA17010301)+1 种基金Key Research Program of Frontier Sciences CAS(QYZDJ-SSW-JSC028)International Partner-National Program of CAS(183311KYSB20200017)。
文摘The local time dependence of the geomagnetic disturbances during magnetic storms indicates the necessity of forecasting the localized magnetic storm indices.For the first time,we construct prediction models for the SuperMAG partial ring current indices(SMR-LT),with the advance time increasing from 1 h to 12 h by Long Short-Term Memory(LSTM)neural network.Generally,the prediction performance decreases with the advance time and is better for the SMR-06 index than for the SMR-00,SMR-12,and SMR-18 index.For the predictions with 12 h ahead,the correlation coefficient is 0.738,0.608,0.665,and 0.613,respectively.To avoid the over-represented effect of massive data during geomagnetic quiet periods,only the data during magnetic storms are used to train and test our models,and the improvement in prediction metrics increases with the advance time.For example,for predicting the storm-time SMR-06 index with 12 h ahead,the correlation coefficient and the prediction efficiency increases from 0.674 to 0.691,and from 0.349 to 0.455,respectively.The evaluation of the model performance for forecasting the storm intensity shows that the relative error for intense storms is usually less than the relative error for moderate storms.
文摘The Substorm Current Wedge (SCW) occurrence in the late growth and onset phases of substorms was proposed as the current system which disrupts cross-tail current by diverting it to the ionosphere. The closure current for the SCW originally was suggested to be the strong westward auroral electrojet (WEJ). However, the SCW-WEJ system has no viable generator current. Similarly, the asymmetric or Partial Ring Current (PRC) increases in strength during the growth phase, and is sometimes associated with an enhanced Region 2 field-aligned current (FAC) closing to the ionosphere, but specifics of that closure have been lacking. Here we present a tmifying picture which includes the SCW post- and pre-midnight (AM and PM, respectively) currents and a generator current in the midnight portion of the PRC system, with these currents based upon a model of the nightside magnetotail magnetic geometry. That geometry consists of open north and south lobe regions surrounding a plasmasheet with two types of closed field line regions-stretched lines in the central part of the plasmasheet (SPS) and dipolar lines (DPS) between the low lati- tude boundary layer (LLBL) regions and the SPS. There is also an important plasmasheet transition region (TPS) in which the dipolar field near the plasmapause gradually transforms to stretched lines near the earthward edge of the SPS, and in which the midnight part of the PRC flows. We propose that our proposed near-onset current system consists of a central current which be- comes part of the midnight sector PRC and which is the generator, to which are linked two three-part current systems, one on the dawnside and one on the duskside. The three-part systems consist of up and down FACs closing as Pedersen currents in the iono- sphere. These 3-part systems are not activated until near-onset is reached, because of a lack of ionospheric conductivity in the appropriate locations where the Pedersen current closure occurs. The initial downward FAC of the 3-part dawnside system and the final upward FAC of the 3-part duskside system correspond to the AM and PM current segments, respectively, of the originally proposed SCW.