In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to...In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.展开更多
Characterized by the quasi-conically symmetric flow field,κshock wave system,and highly three-dimensional separation structures,the swept shock-wave/boundarylayer interaction(SBLI)induced by sharp fins is one of the ...Characterized by the quasi-conically symmetric flow field,κshock wave system,and highly three-dimensional separation structures,the swept shock-wave/boundarylayer interaction(SBLI)induced by sharp fins is one of the most important phenomena in supersonic flights.An aerothermoelastic analysis is conducted on the interactions between thin-walled panels and swept SBLIs.The results of rigid wall condition,aeroelastic analysis and aerothermoelastic analysis are compared to highlight the significant influence of fluid-thermal-structural interactions on the structure and the flow field of swept SBLIs.The results show that in the aeroelastic analysis,for the material applied to the panel,although a dynamic structural response is observed,the deformation is minor and has a limited influence on the flow field.However,in the aerothermoelastic analysis,the consideration of aerodynamic heating has a significant impact on the structural response and the flow field.The deformation is an order of magnitude larger than that in the aeroelastic analysis with high vibration frequency and various main frequencies at different locations.As a result,the flow field is no longer quasi-conically symmetric.Theλshock wave system and separation structures are completely disrupted by multiple shock and expansion waves induced by the large structural deformation and become much more complex with highly three-dimensional features.This research highlights the significance of investigations on complex three-dimensional aerothermoelastic problems for supersonic flight vehicles.展开更多
Objective To study the causal relationship between R&D investment and enterprise performance of domestic pharmaceutical enterprises.Methods Panel data model was adopted for empirical analysis.Results and Conclusio...Objective To study the causal relationship between R&D investment and enterprise performance of domestic pharmaceutical enterprises.Methods Panel data model was adopted for empirical analysis.Results and Conclusion Increasing the R&D investment intensity of pharmaceutical enterprises in the Yangtze River Delta and Zhejiang by 1%will increase their profit margins by 0.79%and 0.46%.On the contrary,if the profit margin increases by 1%,the R&D investment intensity will increase by 0.25%and 0.19%.If the profit margin of pharmaceutical enterprises in Beijing,Tianjin,Hebei,Chengdu,Chongqing and other regions increases by 1%,the R&D investment intensity will increase by 0.14%,0.07%and 0.1%,respectively,which are lower than those in the Yangtze River Delta and Zhejiang.The relationship between R&D investment and enterprise performance of pharmaceutical enterprises in the Yangtze River Delta and Zhejiang Province is Granger causality,showing a two-way positive effect.Profits and R&D investment of pharmaceutical enterprises in Beijing,Tianjin,Hebei,Chengdu,Chongqing and other regions are also Granger causality.But in the Pearl River Delta,profits and R&D investment have not passed the stability test,it is impossible to determine the causality between them.展开更多
To address the limitations of traditional finite element methods,particularly the continuum assumption and difficulties in tracking the solid-liquid interface,this study introduces a lattice Boltzmann-based mathematic...To address the limitations of traditional finite element methods,particularly the continuum assumption and difficulties in tracking the solid-liquid interface,this study introduces a lattice Boltzmann-based mathematical and physical model to simulate flow and heat transfer in the laser welding molten pool of tin-coated copper used in solar panel busbars(a thin strip or wire of conductive metal embedded on the surface of a solar cell to collect and conduct the electricity generated by the photovoltaic cell).The model incorporates key external forces,including surface tension,solid-liquid interface tension,and recoil pressure.A moving and rotating Gaussian-body heat source is adopted,with temperature treated as an implicit function of enthalpy.Coupled iterative schemes for the temperature and velocity fields are constructed using a dual-distribution function approach with a D3Q15 lattice structure.The model is implemented in Python,utilizing libraries such as NumPy,SciPy,Mayavi,and Matplotlib for computation and visualization.Simulation results reveal that the heat transfer mechanism in the molten pool transitions from pure conduction to conduction-convection due to surface tension effects,leading to the formation of multiple counter-rotating vortex structures.The peak temperature at the pool center reaches 3200 K,with maximum melt depth and width measured at 0.5 and 1.2 mm,respectively.Over time,both penetration depth and melt width increase,though the width exhibits a more pronounced growth.Comparison with experimental thermal cycling data from laser weld joints shows strong agreement,with a maximum error of less than 1%,validating the accuracy of the proposed method.展开更多
To enhance the resistance of honeycomb sandwich panel against local impact,this study delved into the matching relationship between face sheets and core.An integrated approach,combining experiment,simulation,and theor...To enhance the resistance of honeycomb sandwich panel against local impact,this study delved into the matching relationship between face sheets and core.An integrated approach,combining experiment,simulation,and theoretical methods,was used.Local loading experiments were conducted to validate the accuracy of the finite element model.Furthermore,a control equation was formulated to correlate structural parameters with response modes,and a matching coefficientλ(representing the ratio of core thickness to face sheet thickness)was introduced to establish a link between these parameters and impact characteristics.A demand-driven reverse design methodology for structural parameters was developed,with numerical simulations employed to assess its effectiveness.The results indicate that the proposed theory can accurately predict response modes and key indicators.An increase in theλbolsters the structural indentation resistance while concurrently heightens the likelihood of penetration.Conversely,a decrease in theλimproves the resistance to penetration,albeit potentially leading to significant deformations in the rear face sheet.Numerical simulations demonstrate that the reverse design methodology significantly enhances the structural penetration resistance.Comparative analyses indicate that appropriate matching reduces indentation depth by 27.4% and indentation radius by 41.8%of the proposed structure.展开更多
文摘In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.
基金supported by the National Natural Science Foundation of China(Grant No.12302229,and No.12272354)the Youth Talent Support Program of Henan Province(Grant No.2025HYTP025)+1 种基金the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20232400)the Key Research Project Plan of Higher Education Institutions in Henan Province(Grant No.25A590004)。
文摘Characterized by the quasi-conically symmetric flow field,κshock wave system,and highly three-dimensional separation structures,the swept shock-wave/boundarylayer interaction(SBLI)induced by sharp fins is one of the most important phenomena in supersonic flights.An aerothermoelastic analysis is conducted on the interactions between thin-walled panels and swept SBLIs.The results of rigid wall condition,aeroelastic analysis and aerothermoelastic analysis are compared to highlight the significant influence of fluid-thermal-structural interactions on the structure and the flow field of swept SBLIs.The results show that in the aeroelastic analysis,for the material applied to the panel,although a dynamic structural response is observed,the deformation is minor and has a limited influence on the flow field.However,in the aerothermoelastic analysis,the consideration of aerodynamic heating has a significant impact on the structural response and the flow field.The deformation is an order of magnitude larger than that in the aeroelastic analysis with high vibration frequency and various main frequencies at different locations.As a result,the flow field is no longer quasi-conically symmetric.Theλshock wave system and separation structures are completely disrupted by multiple shock and expansion waves induced by the large structural deformation and become much more complex with highly three-dimensional features.This research highlights the significance of investigations on complex three-dimensional aerothermoelastic problems for supersonic flight vehicles.
基金Shenyang Pharmaceutical University Young and Middle aged Teacher Career Development Support PlanPublic Welfare Research Fund for Scientific Undertakings of Liaoning Province in 2022(Soft Science Research Plan)(No.2022JH4/10100040).
文摘Objective To study the causal relationship between R&D investment and enterprise performance of domestic pharmaceutical enterprises.Methods Panel data model was adopted for empirical analysis.Results and Conclusion Increasing the R&D investment intensity of pharmaceutical enterprises in the Yangtze River Delta and Zhejiang by 1%will increase their profit margins by 0.79%and 0.46%.On the contrary,if the profit margin increases by 1%,the R&D investment intensity will increase by 0.25%and 0.19%.If the profit margin of pharmaceutical enterprises in Beijing,Tianjin,Hebei,Chengdu,Chongqing and other regions increases by 1%,the R&D investment intensity will increase by 0.14%,0.07%and 0.1%,respectively,which are lower than those in the Yangtze River Delta and Zhejiang.The relationship between R&D investment and enterprise performance of pharmaceutical enterprises in the Yangtze River Delta and Zhejiang Province is Granger causality,showing a two-way positive effect.Profits and R&D investment of pharmaceutical enterprises in Beijing,Tianjin,Hebei,Chengdu,Chongqing and other regions are also Granger causality.But in the Pearl River Delta,profits and R&D investment have not passed the stability test,it is impossible to determine the causality between them.
基金Science and Technology Research Key Competitive Project of Quzhou Science and Technology Bureau(Nos.2023K266,2024K010)General Project for Cultivating Outstanding Young Teachers in Anhui Province’s Universities(2025).
文摘To address the limitations of traditional finite element methods,particularly the continuum assumption and difficulties in tracking the solid-liquid interface,this study introduces a lattice Boltzmann-based mathematical and physical model to simulate flow and heat transfer in the laser welding molten pool of tin-coated copper used in solar panel busbars(a thin strip or wire of conductive metal embedded on the surface of a solar cell to collect and conduct the electricity generated by the photovoltaic cell).The model incorporates key external forces,including surface tension,solid-liquid interface tension,and recoil pressure.A moving and rotating Gaussian-body heat source is adopted,with temperature treated as an implicit function of enthalpy.Coupled iterative schemes for the temperature and velocity fields are constructed using a dual-distribution function approach with a D3Q15 lattice structure.The model is implemented in Python,utilizing libraries such as NumPy,SciPy,Mayavi,and Matplotlib for computation and visualization.Simulation results reveal that the heat transfer mechanism in the molten pool transitions from pure conduction to conduction-convection due to surface tension effects,leading to the formation of multiple counter-rotating vortex structures.The peak temperature at the pool center reaches 3200 K,with maximum melt depth and width measured at 0.5 and 1.2 mm,respectively.Over time,both penetration depth and melt width increase,though the width exhibits a more pronounced growth.Comparison with experimental thermal cycling data from laser weld joints shows strong agreement,with a maximum error of less than 1%,validating the accuracy of the proposed method.
基金Project(2022A02480004)supported by the Major Project of China Railway Design CorporationProject(2023RC1011)supported by the Science and Technology Innovation Program of Hunan Province,China+2 种基金Project(2024JJ6515)supported by the Hunan Provincial Natural Science Foundation,ChinaProject(kq2402220)supported by the Natural Science Foundation of Changsha City,ChinaProject(52402438)supported by the National Natural Science Foundation of China。
文摘To enhance the resistance of honeycomb sandwich panel against local impact,this study delved into the matching relationship between face sheets and core.An integrated approach,combining experiment,simulation,and theoretical methods,was used.Local loading experiments were conducted to validate the accuracy of the finite element model.Furthermore,a control equation was formulated to correlate structural parameters with response modes,and a matching coefficientλ(representing the ratio of core thickness to face sheet thickness)was introduced to establish a link between these parameters and impact characteristics.A demand-driven reverse design methodology for structural parameters was developed,with numerical simulations employed to assess its effectiveness.The results indicate that the proposed theory can accurately predict response modes and key indicators.An increase in theλbolsters the structural indentation resistance while concurrently heightens the likelihood of penetration.Conversely,a decrease in theλimproves the resistance to penetration,albeit potentially leading to significant deformations in the rear face sheet.Numerical simulations demonstrate that the reverse design methodology significantly enhances the structural penetration resistance.Comparative analyses indicate that appropriate matching reduces indentation depth by 27.4% and indentation radius by 41.8%of the proposed structure.