Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used...Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used to optimize the parameters of membership functions (MFs) off line,and the neural network was used to adjust the parameters of MFs on line to enhance the response of the controller.Moreover,the latter network was used to adjust the fuzzy rules automatically to reduce the computation of the neural network and improve the robustness and adaptability of the controller,so that the controller can work well ever when the underwater vehicle works in hostile ocean environment.Finally,experiments were carried on " XX" mini autonomous underwater vehicle (min-AUV) in tank.The results showed that this controller has great improvement in response and overshoot,compared with the traditional controllers.展开更多
Urban rail transit has the advantages of large traffic capacity,high punctuality and zero congestion,and it plays an increasingly important role in modern urban life.Braking system is an important system of urban rail...Urban rail transit has the advantages of large traffic capacity,high punctuality and zero congestion,and it plays an increasingly important role in modern urban life.Braking system is an important system of urban rail train,which directly affects the performance and safety of train operation and impacts passenger comfort.The braking performance of urban rail trains is directly related to the improvement of train speed and transportation capacity.Also,urban rail transit has the characteristics of high speed,short station distance,frequent starting,and frequent braking.This makes the braking control system constitute a time-varying,time-delaying and nonlinear control system,especially the braking force changes directly disturb the parking accuracy and comfort.To solve these issues,a predictive control algorithm based on T-S fuzzy model was proposed and applied to the train braking control system.Compared with the traditional PID control algorithm and self-adaptive fuzzy PID control algorithm,the braking capacity of urban rail train was improved by 8%.The algorithm can achieve fast and accurate synchronous braking,thereby overcoming the dynamic influence of the uncertainty,hysteresis and time-varying factors of the controlled object.Finally,the desired control objectives can be achieved,the system will have superior robustness,stability and comfort.展开更多
The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digita...The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digital signal processor(DSP) is proposed. First, the combination of genetic algorithm(GA) and simulated annealing algorithm(SAA) is put forward, called GA-SA algorithm, which can make full use of the global search ability of GA and local search ability of SA. Later, based on T-S cloud reasoning neural network, flatness predictive model is designed in DSP. And it is applied to 900 HC reversible cold rolling mill. Experimental results demonstrate that the flatness predictive model via T-S cloud reasoning network can run on the hardware DSP TMS320 F2812 with high accuracy and robustness by using GA-SA algorithm to optimize the model parameter.展开更多
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur...Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling.展开更多
An energy-saving scheme for pumping units via intermission start-stop performance is proposed. Because of the complexity of the oil extraction process, Fuzzy Neural Network (FNN) intelligent control is adopted. The st...An energy-saving scheme for pumping units via intermission start-stop performance is proposed. Because of the complexity of the oil extraction process, Fuzzy Neural Network (FNN) intelligent control is adopted. The structure of the Takagi-Sugeno (T-S) fuzzy neural network model is introduced and modified. FNNs are trained with sample information from oil fields and expert knowledge. Finally, pumping unit energy-saving FNN software, which cuts down power costs substantially, is presented.展开更多
文摘Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used to optimize the parameters of membership functions (MFs) off line,and the neural network was used to adjust the parameters of MFs on line to enhance the response of the controller.Moreover,the latter network was used to adjust the fuzzy rules automatically to reduce the computation of the neural network and improve the robustness and adaptability of the controller,so that the controller can work well ever when the underwater vehicle works in hostile ocean environment.Finally,experiments were carried on " XX" mini autonomous underwater vehicle (min-AUV) in tank.The results showed that this controller has great improvement in response and overshoot,compared with the traditional controllers.
基金This work was supported by the Youth Backbone Teachers Training Program of Henan colleges and universities under Grant No.2016ggjs-287(W.X.K.,http://jyt.henan.gov.cn/)the Project of Science and Technology of Henan province under Grant Nos.172102210124 and 202102210269(W.X.K.,http://www.hnkjt.gov.cn/)the Key Scientific Research Projects in Colleges and Universities in Henan Grant No.18B460003(W.X.K.,http://jyt.henan.gov.cn/)
文摘Urban rail transit has the advantages of large traffic capacity,high punctuality and zero congestion,and it plays an increasingly important role in modern urban life.Braking system is an important system of urban rail train,which directly affects the performance and safety of train operation and impacts passenger comfort.The braking performance of urban rail trains is directly related to the improvement of train speed and transportation capacity.Also,urban rail transit has the characteristics of high speed,short station distance,frequent starting,and frequent braking.This makes the braking control system constitute a time-varying,time-delaying and nonlinear control system,especially the braking force changes directly disturb the parking accuracy and comfort.To solve these issues,a predictive control algorithm based on T-S fuzzy model was proposed and applied to the train braking control system.Compared with the traditional PID control algorithm and self-adaptive fuzzy PID control algorithm,the braking capacity of urban rail train was improved by 8%.The algorithm can achieve fast and accurate synchronous braking,thereby overcoming the dynamic influence of the uncertainty,hysteresis and time-varying factors of the controlled object.Finally,the desired control objectives can be achieved,the system will have superior robustness,stability and comfort.
基金Project(E2015203354)supported by Natural Science Foundation of Steel United Research Fund of Hebei Province,ChinaProject(ZD2016100)supported by the Science and the Technology Research Key Project of High School of Hebei Province,China+1 种基金Project(LJRC013)supported by the University Innovation Team of Hebei Province Leading Talent Cultivation,ChinaProject(16LGY015)supported by the Basic Research Special Breeding of Yanshan University,China
文摘The accuracy of present flatness predictive method is limited and it just belongs to software simulation. In order to improve it, a novel flatness predictive model via T-S cloud reasoning network implemented by digital signal processor(DSP) is proposed. First, the combination of genetic algorithm(GA) and simulated annealing algorithm(SAA) is put forward, called GA-SA algorithm, which can make full use of the global search ability of GA and local search ability of SA. Later, based on T-S cloud reasoning neural network, flatness predictive model is designed in DSP. And it is applied to 900 HC reversible cold rolling mill. Experimental results demonstrate that the flatness predictive model via T-S cloud reasoning network can run on the hardware DSP TMS320 F2812 with high accuracy and robustness by using GA-SA algorithm to optimize the model parameter.
基金This work was supported by the Natural Science Foundation of Hebei Province(F2019203505).
文摘Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling.
文摘An energy-saving scheme for pumping units via intermission start-stop performance is proposed. Because of the complexity of the oil extraction process, Fuzzy Neural Network (FNN) intelligent control is adopted. The structure of the Takagi-Sugeno (T-S) fuzzy neural network model is introduced and modified. FNNs are trained with sample information from oil fields and expert knowledge. Finally, pumping unit energy-saving FNN software, which cuts down power costs substantially, is presented.