Studies on the use of renewable materials for various applications,including polymers,have gained momentum due to global climate change and the push towards a circular economy.In this study,polymer resins were develop...Studies on the use of renewable materials for various applications,including polymers,have gained momentum due to global climate change and the push towards a circular economy.In this study,polymer resins were developed through Michael 1,4-addition.The precursors were synthesized from tall oil-based acetoacetates derived from epoxidized tall oil fatty acids or their methyl esters.Two different epoxidation methods were employed:enzymatic epoxidation of tall oil fatty acids and ion-exchange resin epoxidation of tall oil fatty acid methyl esters.Following oxirane opening and transesterification with trimethylolpropane,further esterification or transesterification was carried out to obtain the acetoacetates.These synthesized acetoacetates were then reacted with acrylates of various functionalities to obtain polymer resins with differing degrees of crosslinking.The developed polymer resins were characterized using differential scanning calorimetry,dynamic mechanical analysis,and thermogravimetric analysis.The results indicated that the glass transition temperature and storage modulus of the polymer resins were significantly influenced by both the functionality of the acrylates used and the epoxidation technique employed.Higher acrylate functionality resulted in increased stiffness,while enzymatic epoxidation enhanced the polymer’s mechanical properties,nearly doubling the storage modulus,achieving approximately 470 MPa,compared to the ion-exchange resin technique.Therefore,selecting the appropriate acrylate functionality and epoxidation method could tailor the mechanical properties of the polymer resins.展开更多
The introduction of dynamic covalent bonds into the structure of epoxy resins can improve the degradation performance of the materials.But to a certain extent,it will affect the insulating properties of the resin,and ...The introduction of dynamic covalent bonds into the structure of epoxy resins can improve the degradation performance of the materials.But to a certain extent,it will affect the insulating properties of the resin,and how to balance the insulating properties and degradation performance has become an urgent problem.In this paper,the effects of different catalysts on the thermal-force-electrical properties of sorbitolbased resins were systematically investigated based on the dynamic ester bonding to construct the resin crosslinking network,and the biobased sorbitol glycidyl ether was used as the resin matrix.The experiments show that the resin system catalyzed by triethanolamine(TEOA)exhibits excellent comprehensive performance,which combines good thermal stability and mechanical properties with excellent electrical properties(breakdown field strength of 44.21 k V/mm and dielectric loss factor of 0.29%).In addition,chemical degradation tests were conducted on the resin systems with different catalysts,and the experiments showed that the produced resins could be degraded in benzyl alcohol and exhibited good degradation performance.This study provides a theoretical basis and technical path for the development of new bio-based electrical insulating materials with both high insulation and degradation properties,which is conducive to the popularization and application of bio-based resins in the field of electrical equipment.展开更多
Over the past several decades,the integration of IONs into EP emerged as an effective method for enhancing its mechanical properties.Nevertheless,challenges remain,especially with u-IONs,where the interfacial strength...Over the past several decades,the integration of IONs into EP emerged as an effective method for enhancing its mechanical properties.Nevertheless,challenges remain,especially with u-IONs,where the interfacial strength with EP is suboptimal,resulting in aggregation within the EP matrix and a subsequent deterioration in the mechanical performance of u-ION/EP nanocomposites.In this comprehensive review,we explored advanced chemical modification techniques tailored for IONs incorporated into EP,providing a detailed examination of the mechanical characteristics of surface cm-ION/EP nanocomposites.This review investigates various chemical modification methods and their distinct impacts on the mechanical attributes of the resulting EP nanocomposites.Special emphasis is given to addressing the persistent challenges of inadequate interfacial strength and aggregation.Furthermore,this article examines prospective surface modification approaches for inorganic oxide nanoparticles,offering a visionary outlook on methods to improve the mechanical performance of EP in future.展开更多
It is a good practice to change the site soil properties when dealing with inappropriate soils in geotechnical engineering,referred to as soil improvement.This study investigated the effects of epoxy resin LR202 stabi...It is a good practice to change the site soil properties when dealing with inappropriate soils in geotechnical engineering,referred to as soil improvement.This study investigated the effects of epoxy resin LR202 stabilizer(5 wt%of soil as an optimum percentage)and glass fibers(0 wt%,0.4 wt%and 0.8 wt%of stabilized soil)as reinforcement on silty sand’s durability.For this purpose,the unconfined compressive strength test(12 tests),durability test(12 tests),ultrasonic pulse velocity(UPV)test(48 tests),and standard compactions test(5 tests)were performed.The results of this study showed that the addition of epoxy resin improves the durability of silty sand soil.The stabilized samples containing 5 wt%epoxy resin resisted 12 freeze-thaw cycles,and the sample behavior was enhanced by adding 0.4 wt%and 0.8 wt%fibers to the stabilized samples.Hence,the samples stabilized with epoxy resin exhibited acceptable behavior under freeze-thaw durability cycles.This indicates that epoxy resin stabilizer is appropriate in areas with possible frost and exhibits good behavior.The results of the UPV test showed that it could be used as a non-destructive test to control the durability of epoxy resin-stabilized soils.展开更多
We aimed to enhance the flame retardancy of epoxy resin(EP)by synthesizing a novel,halogen-free flame retardant through a one-pot method.The synthesis utilized 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide(DOPO)...We aimed to enhance the flame retardancy of epoxy resin(EP)by synthesizing a novel,halogen-free flame retardant through a one-pot method.The synthesis utilized 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide(DOPO),furfurylamine(FA),and benzene propionaldehyde(BPA)as raw materials.We conducted differential scanning calorimetry(DSC)analysis to investigate the effects of FPD on the curing process and thermal properties of EP.Our findings reveal that incorporating FPD into EP can facilitate a faster curing process and increase the carbon residue post-combustion.Specifically,the FPD/EP-7 composite demonstrates a limiting oxygen index(LOI)of 34.9%and achieves a UL-94V-0 rating with a phosphorus content of 0.91wt%.These results indicate that FPD significantly enhances the thermal stability and charring rate of EP,thereby improving its flame retardancy.Although the addition of FPD slightly reduces the mechanical properties of EP,the composite material maintains excellent performance.展开更多
The removal of highly toxic arsenic(As)and antimony(Sb)contaminants in water by adsorption presents a great challenge worldwide.Conventional adsorbents exhibit insufficient efficacy for removing pentavalent oxyanions,...The removal of highly toxic arsenic(As)and antimony(Sb)contaminants in water by adsorption presents a great challenge worldwide.Conventional adsorbents exhibit insufficient efficacy for removing pentavalent oxyanions,As(Ⅴ)and Sb(Ⅴ),which are predominant compared with the trivalent species,As(Ⅲ)and Sb(Ⅲ),in surface waters.Here,we synthesized a novel composite adsorbent,amine-functionalized polystyrene resin loaded with nano TiO_(2)(Am PSd-Ti).The mm-scale spheres showed outstanding adsorption capacities for As(Ⅲ),As(Ⅴ),Sb(Ⅲ),and Sb(Ⅴ)at 73.85,153.29,86.80,and 123.71 mg/g,respectively.Am PSd-Ti exhibited selective adsorption for As and Sb in the presence of Cl^(-),NO_(3)^(-),SO_(4)^(2-),and F^(-).As and Sb were adsorbed by the nano-sized TiO_(2)confined in the porous resin via forming innersphere complexes.The protonated amine groups enhanced the adsorption of As(Ⅴ)and Sb(Ⅴ)by electrostatic attraction and hydrogen bonding,which was confirmed by experimental results and molecular dynamics simulations.Fixed-bed column tests showed breakthrough curves with adsorption capacities of1.38 mg/g(6600 BV)and 6.65 mg/g(1260 BV)upon treating real As-contaminated groundwater and Sbcontaminated industrial wastewater.Our study highlights a feasible strategy by incorporating inorganic metal oxides into organic polymers to achieve highly efficient removal of As and Sb in real-world scenarios.展开更多
In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occur...In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occurs due to the intrusion of gases generated during the resin burning of the sand core into castings during the casting process.Therefore,a gas generation and flow constitution model was established,in which the gas generation rate is a function of temperature and time,and the flow of gas is controlled by the gas release,conservation,and Darcy's law.The heat transfer and gas flow during casting process was numerically simulated.The dangerous point of cores is firstly identified by a virtual heat transfer method based on the similarity between heat transfer and gas flow in the sand core.The gas pores in castings are predicted by the gas pressure,the viscosity and state of the melt for these dangerous points.Three distinct sand core structures were designed and used for the production of iron castings,and the simulated gas pore results were validated by the obtained castings.展开更多
Bioinspired active pillar structures,known for their large surface area,mechanical compliance,and diverse deformation modes,have garnered extensive research interest.Among various active pillar structures,liquid cryst...Bioinspired active pillar structures,known for their large surface area,mechanical compliance,and diverse deformation modes,have garnered extensive research interest.Among various active pillar structures,liquid crystal elastomer(LCE)pillar arrays are capable of exhibiting significant and reversible anisotropic deformation under cyclic heating and cooling,showing great potential in tunable adhesion,soft robots,and biomedical devices.However,scaling up LCE pillar manufacturing remains challenging,limiting its practical applications.In this work,a solventfree LCE resin is developed with unique features including simple operating procedure,short fabrication time,and tunable responsive temperature,enabling rapid and large-scale production of LCE pillar arrays.The LCE resin allows for the preparation of complex 3D shapes in addition to film or specimen.The fabrication time can be as short as 4 h,without the need to evaporate solvent.Moreover,the LCE resins can be adjusted with a variable phase transition temperature range from 49.4℃ to 97.7℃ by incorporating non-liquid crystal acrylate chains.The resulting active pillar array structure can undertake sequential actuation upon heating with the tunable actuation temperature.Finally,the application of these pillar arrays in multi-level information encryption is demonstrated.The LCE pillar structure introduced here offers a new strategy for constructing advanced active LCE structures with tunable responsive behavior.展开更多
BACKGROUND Due to saliva and salivary glands are reservoir to severe acute respiratory syndrome-coronavirus 2(SARS-CoV-2),aerosols and saliva droplets are primary sources of cross-infection and are responsible for the...BACKGROUND Due to saliva and salivary glands are reservoir to severe acute respiratory syndrome-coronavirus 2(SARS-CoV-2),aerosols and saliva droplets are primary sources of cross-infection and are responsible for the high human–human transmission of SARS-CoV-2.However,there is no evidence about how SARSCoV-2 interacts with oral structures,particularly resin composites.AIM To evaluate the interaction of SARS-CoV-2 proteins with monomers present in resin composites using in silico analysis.METHODS Four SARS-CoV-2 proteins[i.e.main protease,3C-like protease,papain-like protease(PLpro),and glycoprotein spike]were selected along with salivary amylase as the positive control,and their binding affinity with bisphenol-A glycol dimethacrylate,bisphenol-A ethoxylated dimethacrylate,triethylene glycol dimethacrylate,and urethane dimethacrylate was evaluated.Molecular docking was performed using AutoDock Vina and visualised in Chimera UCSF 1.14.The best ligand–protein model was identified based on the binding energy(ΔG–kcal/moL).RESULTS Values for the binding energies ranged from-3.6 kcal/moL to-7.3 kcal/moL.The 3-monomer chain had the lowest binding energy(i.e.highest affinity)to PLpro and the glycoprotein spike.Non-polymerised monomers and polymerised chains interacted with SARS-CoV-2 proteins via hydrogen bonds and hydrophobic interactions.Those findings suggest an interaction between SARS-CoV-2 proteins and resin composites.CONCLUSION SARS-CoV-2 proteins show affinity to non-polymerised and polymerised resin composite chains.展开更多
Four types of resins,P1–P4,are used as binders for FeSiBC amorphous powder,which are then press-molded and heat-treated to fabricate magnetic powder cores(MPCs).By testing the permeability,loss,density,and radial cru...Four types of resins,P1–P4,are used as binders for FeSiBC amorphous powder,which are then press-molded and heat-treated to fabricate magnetic powder cores(MPCs).By testing the permeability,loss,density,and radial crush strength of MPCs,the effect of the binder on the magnetic properties of the cores is investigated and the best resin is found.The results show that the silicone resin P3 exhibits the best thermal stability,retaining 82.1%of its mass after heat treatment at 430°C.This contributes to improving the insulation of MPCs and reducing the eddy current loss,which is 46.06 mW cm^(−3)(150 kHz,20 mT)with the mechanical strength of 11.13 MPa.The bonding of epoxy resin P4 is superior to that of other resins,which significantly improves the powder compactness and makes MPCs density reach 5.67 g cm^(−3),and its permeability is as high as 28.7.The two types of resins have different advantages,and both lead to MPCs with excellent properties.展开更多
Acidic-and alkalic-hydrolyses are selective in breaking functional bonds and falling off pharmacological moieties of antibiotics in production wastewater in comparison with advanced oxidation processes.Elevating tempe...Acidic-and alkalic-hydrolyses are selective in breaking functional bonds and falling off pharmacological moieties of antibiotics in production wastewater in comparison with advanced oxidation processes.Elevating temperature can accelerate hydrolytic kinetics and improve efficiency.In this work,magnetic sulfonated polypropylene resin(Fe_(3)O_(4)@PS-S)composites were reported for acidic-thermal hydrolysis of tylosin by employing the acidic feature of sulfonic group,the dielectric effect of resin,and the magnetic-loss effect of magnetite under microwave irradiation.As observed,a rapid and complete mitigation 100 mg/L of tylosin was achieved within 15 min by the catalysts.Acidic cleavage of tylosin was fulfilled by sulfonic groups in the composites,and microwave thermal accelerated the hydrolysis reactions due to the dielectric and magnetic-loss effects.Differentiating the dielectric and magnetic-loss effects through electromagnetic analyses indicated that the latter contributed more in converting microwave energy to heat.The interactions under multiple operational conditions were quantitatively fitted using the Behnajady model and visually demonstrated,which indicated that a synergic effect of microwave thermal-and acidichydrolyses contributed to the efficient mitigation of tylosin.The transformation products were identified and the pathways were supposed.Cleaving deoxyaminosugars groups and destructing lactone structures led to reduced antibacterial potential and toxicity reduction.The acute toxicity of tylosin and transformation products to fish,daphnia,and green algae were all classified as non-toxic.This work suggested that this synergistic acid-thermal hydrolytic method is attractive and promising in pretreating tylosin production wastewater in field.展开更多
B-COPNA resin,synthesized from the light fraction of ethylene tar(ETLF),is a superior precursor of the carbon materials.An in-depth understanding of the COPNA resin preparation process and strict control of crosslinki...B-COPNA resin,synthesized from the light fraction of ethylene tar(ETLF),is a superior precursor of the carbon materials.An in-depth understanding of the COPNA resin preparation process and strict control of crosslinking degree are crucial for controlling carbon materials performance.Therefore,the synthesis kinetics of B-COPNA resin prepared from ETLF was investigated using in-situ FTIR in this work.The synthesis kinetic models of B-COPNA resin were established for the first time.To express the kinetic model,the concentration changes of C-H in aromatic rings and O-H in PXG monitored by in-situ FTIR were selected as two indicators to calculate concentration of other compounds and describe the synthesis kinetics.Then confirmatory experiments were conducted,and the ρ^(2)(>0.9900),F-values(>10F_(0.05))and parameter errors(below 3%)of kinetic models verify that concentration changes of C-H and O-H can be used to describe synthesis kinetics of B-COPNA resin.Based on the results of confirmatory experiments,the synthesis kinetic model of B-COPNA resin in the ETLF system is established successfully using concentration changes of O-H as an indicator,whose appropriateness and feasibility are proved by the ρ^(2)(0.9960)and F-values(>10F_(0.05)).These models could accurately describe the synthesis rate of B-COPNA resin.展开更多
Different reactive flame retardants have been extensively developed for vinyl ester resins(VERs),but very few of them can yield a flame-retardant resin that meets defined standards(e.g.UL-94 V-0 rating).In this work,p...Different reactive flame retardants have been extensively developed for vinyl ester resins(VERs),but very few of them can yield a flame-retardant resin that meets defined standards(e.g.UL-94 V-0 rating).In this work,phosphorous-containing 1-vinylimidazole salts(called VIDHP and VIDPP)were synthesized through the facile neutralization of the acid and 1-vinylimidazole.VIDHP and VIDPP were then applied as flame-retardant crosslinking agents of VERs,by which phosphorus-containing groups could be incorporated into the resin chain via ionic bonds.VIDHP/VER and VIDPP/VER showed a high curing activity and can be well cured in moderate temperatures.With 20 wt.%additions of VIDHP and VIDPP,VIDHP20/VER,and VIDPP20/VER presented a limiting oxygen index value of 29.7%and 28.4%,respectively,with the latter achieving a UL 94 V0 rating.In the cone calorimetric test,compared to the unmodified VERs,VIDPP20/VER exhibited large reductions in the peak heat release rate,total heat release rate,and total smoke release rate while VIDHP20/VER demonstrated comparatively inferior performance in terms of the heat release.VIDHP20/VER and VIDPP20/VER showed good thermal stability and presented a little lower glass transition temperature than the control sample.VIDPP with a low phosphorus oxidation state(+1)demonstrated high flame-retardant activities in the gaseous phase,whereas VIDHP with a high phosphorus oxidation state(+5)primarily exhibited efficacy in the condensed phase.展开更多
We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these material...We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these materials.The model-predicted values were compared with the experimental results.The results show that when the resin dosage is lower than 10 wt%,the predicted value is lower than the measured value,and the decrease in porosity is obvious;when the resin dosage is higher than 10 wt%,the predicted value is higher than the measured value,the maximum error is 7.95%,and the decrease of porosity is not obvious.The model can predict the trend of the change of elastic modulus.The elastic modulus of resin mineral composites decreases with the increase of porosity.Therefore,the resin dosage should be controlled within 10 wt%when designing the experiments,which provides a guiding direction for the mechanical properties of resin mineral composites to be improved afterward.展开更多
The surface of MoSi2-SiB6/phenolic resin matrix composites was modified by mica,and the thermal oxidation behavior of the composites and the mechanical properties of the pyrolysis products were studied.The results sho...The surface of MoSi2-SiB6/phenolic resin matrix composites was modified by mica,and the thermal oxidation behavior of the composites and the mechanical properties of the pyrolysis products were studied.The results showed that the mica improved the thermal properties of the composites,the thermal expansion coefficient decreased,and the liquid phase formation caused the composites to shrink and increase the density.The flexural strength of mica surface modified composites not only increased to 78.64MPa after thermal treatment at 800-1200℃,but reached 83.02 MPa after high temperature treatment at1400℃.The improvement of the mechanical properties of the residual product benefits from the formation of high temperature ceramic phases such as Mo_(2)C and MoB,and the improvement of the shear strength of the composites by the mica.The shear strength of MBm5-2 at room temperature reached 33.08 MPa,indicating that the improvement of the interlayer properties of the composites further improved its mechanical properties.展开更多
The most widely used bisphenol A-type epoxy resin(DGEBA)in electrical engineering demonstrates excellent mechanical and electrical properties.However,the insoluble and infusible characteristics of cured DGEBA make it ...The most widely used bisphenol A-type epoxy resin(DGEBA)in electrical engineering demonstrates excellent mechanical and electrical properties.However,the insoluble and infusible characteristics of cured DGEBA make it difficult to efficiently degrade and recycle decommissioned electrical equipment.In this study,a degradable itaconic acid-based epoxy resin incorporating dynamic covalent bonds was prepared through the integration of ester bonds and disulfide bonds,with itaconic acid as the precursor.The covalent bonding effects on the mechanical,thermal,electrical,and degradation characteristics were systematically evaluated.The experimental results revealed that the introduction of dynamic ester bonds enhanced the mechanical properties and thermal stability of the resin system,achieving a flexural strength of 141.57 MPa and an initial decomposition temperature T_(5%)of up to 344.9℃.The resin system containing dynamic disulfide bonds exhibited a dielectric breakdown strength of 41.11 k V/mm.Simultaneously,the incorporation of disulfide bonds endowed the epoxy resin with remarkable degradability,enabling complete dissolution within 1.5 h at 90℃ in a mixed solution of dithiothreitol(DTT)and N-methylpyrrolidone(NMP).This research provides a valuable reference for the application of itaconic acid-based vitrimer with dynamic covalent bonds in electrical materials,contributing to the development and utilization of environmentally friendly electrical equipment.展开更多
Heteroatom-doped porous carbon materials have been widely studied due to their high specific surface area and high heteroatom content,but it is difficult to achieve high specific surface area and high heteroatom conte...Heteroatom-doped porous carbon materials have been widely studied due to their high specific surface area and high heteroatom content,but it is difficult to achieve high specific surface area and high heteroatom content at the same time.Herein,a simple method is introduced to prepare N/O co-doped hierarchical porous carbon materials(DNZKs).Phthalonitrile resins(DNZs)were prepared by using 1,3-bis(3,4-dicyanophenoxy)benzene as raw material and ZnCl_(2)/urea as composite curing agent,and then using KOH as activator to successfully prepare DNZKs with high specific surface area,developed pores and high N/O content.The porous carbon material(DNZK@400)obtained at a curing temperature of 400℃ has the highest N content(4.97%(mass)),a large specific surface area(2026 m^(2)·g^(-1)),a high micropore proportion(0.9),a high O content(7.53%(mass)),and the best specific capacitance(up to 567 F·g^(-1) at 0.1 A·g^(-1)),which can be attribute to the high temperature resistance of the nitrogencontaining aromatic heterocyclic structure in DNZs.When the mass ratio of resin and KOH is 1:1,the specific capacitance of the sample tested by the acid three-electrode system is obtained,and it is found that the material has high cycling stability(119%specific capacitance retention after 100,000 cycle tests).This work proposes a simple and easy-to-operate method for the preparation of multifunctional porous carbon.展开更多
The aim of this study was to develop a novel pharmaceutical excipient:an anion exchange resin.Initially,polystyrenedivinylbenzene(PS-DVB)microspheres were synthesized via suspension polymerization.Subsequently,these m...The aim of this study was to develop a novel pharmaceutical excipient:an anion exchange resin.Initially,polystyrenedivinylbenzene(PS-DVB)microspheres were synthesized via suspension polymerization.Subsequently,these microspheres served as a substrate for chloromethylation using methanol,formaldehyde,and chlorosulfonic acid.By optimizing the reaction conditions,the chloromethylated microspheres were characterized using infrared spectroscopy,scanning electron microscopy,and the Mohr method.Under optimal reaction conditions,the resulting products exhibited uniformity and spherical morphology,with an average particle size of approximately 190μm.The PS-DVB microspheres effectively incorporated chloromethyl groups,as evidenced by a chlorine content of 14.67%.Scanning electron microscopy analysis indicated that the appearance of the microspheres remained largely unchanged post-reaction.Overall,the research findings demonstrated the successful preparation of the anion exchange resin.Characterization and quality assessment confirmed that the ion exchange resin met the required standards.展开更多
In this study,a novel CS@SA@ZIF-67 core-shell nano-hybrid was synthesized using zeolitic imidazole framework-67(ZIF-67)as a template and CS@SA@ZIF-67 as a modifier.Then,flame-retardant nanocomposites(EP/CS@SA@ZIF-67)w...In this study,a novel CS@SA@ZIF-67 core-shell nano-hybrid was synthesized using zeolitic imidazole framework-67(ZIF-67)as a template and CS@SA@ZIF-67 as a modifier.Then,flame-retardant nanocomposites(EP/CS@SA@ZIF-67)were obtained by combining the hybrid with epoxy resins.The microstructure and morphology of CS@SA@ZIF-67 and the residual chars were explored using Fourier transform infrared(FTIR),scanning electron microscopy(SEM),and X-ray diffraction(XRD),and the effect of the obtained hybrid materials on the fire performance of the epoxy resins was characterized.Compared with the flame retardant system composed of ZIF-67 and pure EP,the hybrid flame retardant composites exhibited low total heat release and smoke production.The thermogravimetric analysis(TGA)results showed that the maximum thermal decomposition temperature of the EP/CS@SA@ZIF-67 based composite coating was stabilized at the highest value(378.2 and 563.9℃)so that the introduction of CS@SA@ZIF-67 could improve the thermal properties of the EP/CS@SA@ZIF-67 composites to a certain extent.Meanwhile,the cone test results indicated that the peak heat release rate pHRR of the CS@SA@ZIF-67 filled EP composite was reduced by 18.43%compared to that of pure EP,implying enhanced flame retardancy.The enhanced thermal stability and flame retardancy of the CS@SA@ZIF-67 composites were mainly ascribed to the catalytic effect and carbonization ability of CS@SA@ZIF-67.展开更多
基金funded by the Latvian State Institute of Wood Chemistry Bioeconomic grant no.04-24“Development of Composites from Polymer Resin Synthesized from Tall Oil Fatty Acids and Reinforced with Various Fillers”(FiTeCo).
文摘Studies on the use of renewable materials for various applications,including polymers,have gained momentum due to global climate change and the push towards a circular economy.In this study,polymer resins were developed through Michael 1,4-addition.The precursors were synthesized from tall oil-based acetoacetates derived from epoxidized tall oil fatty acids or their methyl esters.Two different epoxidation methods were employed:enzymatic epoxidation of tall oil fatty acids and ion-exchange resin epoxidation of tall oil fatty acid methyl esters.Following oxirane opening and transesterification with trimethylolpropane,further esterification or transesterification was carried out to obtain the acetoacetates.These synthesized acetoacetates were then reacted with acrylates of various functionalities to obtain polymer resins with differing degrees of crosslinking.The developed polymer resins were characterized using differential scanning calorimetry,dynamic mechanical analysis,and thermogravimetric analysis.The results indicated that the glass transition temperature and storage modulus of the polymer resins were significantly influenced by both the functionality of the acrylates used and the epoxidation technique employed.Higher acrylate functionality resulted in increased stiffness,while enzymatic epoxidation enhanced the polymer’s mechanical properties,nearly doubling the storage modulus,achieving approximately 470 MPa,compared to the ion-exchange resin technique.Therefore,selecting the appropriate acrylate functionality and epoxidation method could tailor the mechanical properties of the polymer resins.
基金financially supported by the National Natural Science Foundation of China(No.52377025)。
文摘The introduction of dynamic covalent bonds into the structure of epoxy resins can improve the degradation performance of the materials.But to a certain extent,it will affect the insulating properties of the resin,and how to balance the insulating properties and degradation performance has become an urgent problem.In this paper,the effects of different catalysts on the thermal-force-electrical properties of sorbitolbased resins were systematically investigated based on the dynamic ester bonding to construct the resin crosslinking network,and the biobased sorbitol glycidyl ether was used as the resin matrix.The experiments show that the resin system catalyzed by triethanolamine(TEOA)exhibits excellent comprehensive performance,which combines good thermal stability and mechanical properties with excellent electrical properties(breakdown field strength of 44.21 k V/mm and dielectric loss factor of 0.29%).In addition,chemical degradation tests were conducted on the resin systems with different catalysts,and the experiments showed that the produced resins could be degraded in benzyl alcohol and exhibited good degradation performance.This study provides a theoretical basis and technical path for the development of new bio-based electrical insulating materials with both high insulation and degradation properties,which is conducive to the popularization and application of bio-based resins in the field of electrical equipment.
基金supported by the National Key Research and Development of China(No.2018YFA0702804).
文摘Over the past several decades,the integration of IONs into EP emerged as an effective method for enhancing its mechanical properties.Nevertheless,challenges remain,especially with u-IONs,where the interfacial strength with EP is suboptimal,resulting in aggregation within the EP matrix and a subsequent deterioration in the mechanical performance of u-ION/EP nanocomposites.In this comprehensive review,we explored advanced chemical modification techniques tailored for IONs incorporated into EP,providing a detailed examination of the mechanical characteristics of surface cm-ION/EP nanocomposites.This review investigates various chemical modification methods and their distinct impacts on the mechanical attributes of the resulting EP nanocomposites.Special emphasis is given to addressing the persistent challenges of inadequate interfacial strength and aggregation.Furthermore,this article examines prospective surface modification approaches for inorganic oxide nanoparticles,offering a visionary outlook on methods to improve the mechanical performance of EP in future.
文摘It is a good practice to change the site soil properties when dealing with inappropriate soils in geotechnical engineering,referred to as soil improvement.This study investigated the effects of epoxy resin LR202 stabilizer(5 wt%of soil as an optimum percentage)and glass fibers(0 wt%,0.4 wt%and 0.8 wt%of stabilized soil)as reinforcement on silty sand’s durability.For this purpose,the unconfined compressive strength test(12 tests),durability test(12 tests),ultrasonic pulse velocity(UPV)test(48 tests),and standard compactions test(5 tests)were performed.The results of this study showed that the addition of epoxy resin improves the durability of silty sand soil.The stabilized samples containing 5 wt%epoxy resin resisted 12 freeze-thaw cycles,and the sample behavior was enhanced by adding 0.4 wt%and 0.8 wt%fibers to the stabilized samples.Hence,the samples stabilized with epoxy resin exhibited acceptable behavior under freeze-thaw durability cycles.This indicates that epoxy resin stabilizer is appropriate in areas with possible frost and exhibits good behavior.The results of the UPV test showed that it could be used as a non-destructive test to control the durability of epoxy resin-stabilized soils.
基金Funded by the Fundamental Research Funds for the Central Universities(WUT:2023III012JL)。
文摘We aimed to enhance the flame retardancy of epoxy resin(EP)by synthesizing a novel,halogen-free flame retardant through a one-pot method.The synthesis utilized 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide(DOPO),furfurylamine(FA),and benzene propionaldehyde(BPA)as raw materials.We conducted differential scanning calorimetry(DSC)analysis to investigate the effects of FPD on the curing process and thermal properties of EP.Our findings reveal that incorporating FPD into EP can facilitate a faster curing process and increase the carbon residue post-combustion.Specifically,the FPD/EP-7 composite demonstrates a limiting oxygen index(LOI)of 34.9%and achieves a UL-94V-0 rating with a phosphorus content of 0.91wt%.These results indicate that FPD significantly enhances the thermal stability and charring rate of EP,thereby improving its flame retardancy.Although the addition of FPD slightly reduces the mechanical properties of EP,the composite material maintains excellent performance.
基金financial support of the National Natural Science Foundation of China(No.42230706)the Outstanding Youth Science Fund(Overseas)of Shandong Provincial Natural Science Foundation(No.2022HWYQ-015)+1 种基金the Taishan Scholars Project Special Fund(No.tsqn202211039)Qilu Youth Talent Program of Shandong University(No.61440082163171)。
文摘The removal of highly toxic arsenic(As)and antimony(Sb)contaminants in water by adsorption presents a great challenge worldwide.Conventional adsorbents exhibit insufficient efficacy for removing pentavalent oxyanions,As(Ⅴ)and Sb(Ⅴ),which are predominant compared with the trivalent species,As(Ⅲ)and Sb(Ⅲ),in surface waters.Here,we synthesized a novel composite adsorbent,amine-functionalized polystyrene resin loaded with nano TiO_(2)(Am PSd-Ti).The mm-scale spheres showed outstanding adsorption capacities for As(Ⅲ),As(Ⅴ),Sb(Ⅲ),and Sb(Ⅴ)at 73.85,153.29,86.80,and 123.71 mg/g,respectively.Am PSd-Ti exhibited selective adsorption for As and Sb in the presence of Cl^(-),NO_(3)^(-),SO_(4)^(2-),and F^(-).As and Sb were adsorbed by the nano-sized TiO_(2)confined in the porous resin via forming innersphere complexes.The protonated amine groups enhanced the adsorption of As(Ⅴ)and Sb(Ⅴ)by electrostatic attraction and hydrogen bonding,which was confirmed by experimental results and molecular dynamics simulations.Fixed-bed column tests showed breakthrough curves with adsorption capacities of1.38 mg/g(6600 BV)and 6.65 mg/g(1260 BV)upon treating real As-contaminated groundwater and Sbcontaminated industrial wastewater.Our study highlights a feasible strategy by incorporating inorganic metal oxides into organic polymers to achieve highly efficient removal of As and Sb in real-world scenarios.
基金funded by the Beijing Nature Sciences Fund Haidian Originality Cooperation Project (Grant No. L212002)。
文摘In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occurs due to the intrusion of gases generated during the resin burning of the sand core into castings during the casting process.Therefore,a gas generation and flow constitution model was established,in which the gas generation rate is a function of temperature and time,and the flow of gas is controlled by the gas release,conservation,and Darcy's law.The heat transfer and gas flow during casting process was numerically simulated.The dangerous point of cores is firstly identified by a virtual heat transfer method based on the similarity between heat transfer and gas flow in the sand core.The gas pores in castings are predicted by the gas pressure,the viscosity and state of the melt for these dangerous points.Three distinct sand core structures were designed and used for the production of iron castings,and the simulated gas pore results were validated by the obtained castings.
基金financially supported by the National Key Research and Development Program of China(No.2023YFB3812500)the National Natural Science Foundation of China(No.52105003)the Beijing Municipal Natural Science Foundation(No.2222058)。
文摘Bioinspired active pillar structures,known for their large surface area,mechanical compliance,and diverse deformation modes,have garnered extensive research interest.Among various active pillar structures,liquid crystal elastomer(LCE)pillar arrays are capable of exhibiting significant and reversible anisotropic deformation under cyclic heating and cooling,showing great potential in tunable adhesion,soft robots,and biomedical devices.However,scaling up LCE pillar manufacturing remains challenging,limiting its practical applications.In this work,a solventfree LCE resin is developed with unique features including simple operating procedure,short fabrication time,and tunable responsive temperature,enabling rapid and large-scale production of LCE pillar arrays.The LCE resin allows for the preparation of complex 3D shapes in addition to film or specimen.The fabrication time can be as short as 4 h,without the need to evaporate solvent.Moreover,the LCE resins can be adjusted with a variable phase transition temperature range from 49.4℃ to 97.7℃ by incorporating non-liquid crystal acrylate chains.The resulting active pillar array structure can undertake sequential actuation upon heating with the tunable actuation temperature.Finally,the application of these pillar arrays in multi-level information encryption is demonstrated.The LCE pillar structure introduced here offers a new strategy for constructing advanced active LCE structures with tunable responsive behavior.
文摘BACKGROUND Due to saliva and salivary glands are reservoir to severe acute respiratory syndrome-coronavirus 2(SARS-CoV-2),aerosols and saliva droplets are primary sources of cross-infection and are responsible for the high human–human transmission of SARS-CoV-2.However,there is no evidence about how SARSCoV-2 interacts with oral structures,particularly resin composites.AIM To evaluate the interaction of SARS-CoV-2 proteins with monomers present in resin composites using in silico analysis.METHODS Four SARS-CoV-2 proteins[i.e.main protease,3C-like protease,papain-like protease(PLpro),and glycoprotein spike]were selected along with salivary amylase as the positive control,and their binding affinity with bisphenol-A glycol dimethacrylate,bisphenol-A ethoxylated dimethacrylate,triethylene glycol dimethacrylate,and urethane dimethacrylate was evaluated.Molecular docking was performed using AutoDock Vina and visualised in Chimera UCSF 1.14.The best ligand–protein model was identified based on the binding energy(ΔG–kcal/moL).RESULTS Values for the binding energies ranged from-3.6 kcal/moL to-7.3 kcal/moL.The 3-monomer chain had the lowest binding energy(i.e.highest affinity)to PLpro and the glycoprotein spike.Non-polymerised monomers and polymerised chains interacted with SARS-CoV-2 proteins via hydrogen bonds and hydrophobic interactions.Those findings suggest an interaction between SARS-CoV-2 proteins and resin composites.CONCLUSION SARS-CoV-2 proteins show affinity to non-polymerised and polymerised resin composite chains.
基金financially supported by the Key research and development project of Shandong province in China(Grant No.2022CXGC020308).
文摘Four types of resins,P1–P4,are used as binders for FeSiBC amorphous powder,which are then press-molded and heat-treated to fabricate magnetic powder cores(MPCs).By testing the permeability,loss,density,and radial crush strength of MPCs,the effect of the binder on the magnetic properties of the cores is investigated and the best resin is found.The results show that the silicone resin P3 exhibits the best thermal stability,retaining 82.1%of its mass after heat treatment at 430°C.This contributes to improving the insulation of MPCs and reducing the eddy current loss,which is 46.06 mW cm^(−3)(150 kHz,20 mT)with the mechanical strength of 11.13 MPa.The bonding of epoxy resin P4 is superior to that of other resins,which significantly improves the powder compactness and makes MPCs density reach 5.67 g cm^(−3),and its permeability is as high as 28.7.The two types of resins have different advantages,and both lead to MPCs with excellent properties.
基金supported by the National Natural Science Foundation of China(Nos.51978052 and 22306012)the National Key Research and Development Program of China(No.2023YFC3711300)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110578).
文摘Acidic-and alkalic-hydrolyses are selective in breaking functional bonds and falling off pharmacological moieties of antibiotics in production wastewater in comparison with advanced oxidation processes.Elevating temperature can accelerate hydrolytic kinetics and improve efficiency.In this work,magnetic sulfonated polypropylene resin(Fe_(3)O_(4)@PS-S)composites were reported for acidic-thermal hydrolysis of tylosin by employing the acidic feature of sulfonic group,the dielectric effect of resin,and the magnetic-loss effect of magnetite under microwave irradiation.As observed,a rapid and complete mitigation 100 mg/L of tylosin was achieved within 15 min by the catalysts.Acidic cleavage of tylosin was fulfilled by sulfonic groups in the composites,and microwave thermal accelerated the hydrolysis reactions due to the dielectric and magnetic-loss effects.Differentiating the dielectric and magnetic-loss effects through electromagnetic analyses indicated that the latter contributed more in converting microwave energy to heat.The interactions under multiple operational conditions were quantitatively fitted using the Behnajady model and visually demonstrated,which indicated that a synergic effect of microwave thermal-and acidichydrolyses contributed to the efficient mitigation of tylosin.The transformation products were identified and the pathways were supposed.Cleaving deoxyaminosugars groups and destructing lactone structures led to reduced antibacterial potential and toxicity reduction.The acute toxicity of tylosin and transformation products to fish,daphnia,and green algae were all classified as non-toxic.This work suggested that this synergistic acid-thermal hydrolytic method is attractive and promising in pretreating tylosin production wastewater in field.
基金financially supported by the National Natural Science Foundation of China(52174023)National Natural Science Foundation of P.R.China(22308104)China Petroleum Engineering Corp.,Ltd.(CPEC)(2021ZYGC-01-01)。
文摘B-COPNA resin,synthesized from the light fraction of ethylene tar(ETLF),is a superior precursor of the carbon materials.An in-depth understanding of the COPNA resin preparation process and strict control of crosslinking degree are crucial for controlling carbon materials performance.Therefore,the synthesis kinetics of B-COPNA resin prepared from ETLF was investigated using in-situ FTIR in this work.The synthesis kinetic models of B-COPNA resin were established for the first time.To express the kinetic model,the concentration changes of C-H in aromatic rings and O-H in PXG monitored by in-situ FTIR were selected as two indicators to calculate concentration of other compounds and describe the synthesis kinetics.Then confirmatory experiments were conducted,and the ρ^(2)(>0.9900),F-values(>10F_(0.05))and parameter errors(below 3%)of kinetic models verify that concentration changes of C-H and O-H can be used to describe synthesis kinetics of B-COPNA resin.Based on the results of confirmatory experiments,the synthesis kinetic model of B-COPNA resin in the ETLF system is established successfully using concentration changes of O-H as an indicator,whose appropriateness and feasibility are proved by the ρ^(2)(0.9960)and F-values(>10F_(0.05)).These models could accurately describe the synthesis rate of B-COPNA resin.
基金supported by the National Natural Science Foundation of China(Grant Nos.51991351 and51903132)the Young Elite Scientist Sponsorship Program by CAST(No.2022QNRC001).
文摘Different reactive flame retardants have been extensively developed for vinyl ester resins(VERs),but very few of them can yield a flame-retardant resin that meets defined standards(e.g.UL-94 V-0 rating).In this work,phosphorous-containing 1-vinylimidazole salts(called VIDHP and VIDPP)were synthesized through the facile neutralization of the acid and 1-vinylimidazole.VIDHP and VIDPP were then applied as flame-retardant crosslinking agents of VERs,by which phosphorus-containing groups could be incorporated into the resin chain via ionic bonds.VIDHP/VER and VIDPP/VER showed a high curing activity and can be well cured in moderate temperatures.With 20 wt.%additions of VIDHP and VIDPP,VIDHP20/VER,and VIDPP20/VER presented a limiting oxygen index value of 29.7%and 28.4%,respectively,with the latter achieving a UL 94 V0 rating.In the cone calorimetric test,compared to the unmodified VERs,VIDPP20/VER exhibited large reductions in the peak heat release rate,total heat release rate,and total smoke release rate while VIDHP20/VER demonstrated comparatively inferior performance in terms of the heat release.VIDHP20/VER and VIDPP20/VER showed good thermal stability and presented a little lower glass transition temperature than the control sample.VIDPP with a low phosphorus oxidation state(+1)demonstrated high flame-retardant activities in the gaseous phase,whereas VIDHP with a high phosphorus oxidation state(+5)primarily exhibited efficacy in the condensed phase.
基金Funded by Demonstration Platform for the Production and Application of Key Materials for High-grade CNC Machine Tools(No.2020-370104-34-03-043952)。
文摘We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these materials.The model-predicted values were compared with the experimental results.The results show that when the resin dosage is lower than 10 wt%,the predicted value is lower than the measured value,and the decrease in porosity is obvious;when the resin dosage is higher than 10 wt%,the predicted value is higher than the measured value,the maximum error is 7.95%,and the decrease of porosity is not obvious.The model can predict the trend of the change of elastic modulus.The elastic modulus of resin mineral composites decreases with the increase of porosity.Therefore,the resin dosage should be controlled within 10 wt%when designing the experiments,which provides a guiding direction for the mechanical properties of resin mineral composites to be improved afterward.
基金Funded by the National Natural Science Foundation of China(Nos.52171045,52162013,and 51932006)。
文摘The surface of MoSi2-SiB6/phenolic resin matrix composites was modified by mica,and the thermal oxidation behavior of the composites and the mechanical properties of the pyrolysis products were studied.The results showed that the mica improved the thermal properties of the composites,the thermal expansion coefficient decreased,and the liquid phase formation caused the composites to shrink and increase the density.The flexural strength of mica surface modified composites not only increased to 78.64MPa after thermal treatment at 800-1200℃,but reached 83.02 MPa after high temperature treatment at1400℃.The improvement of the mechanical properties of the residual product benefits from the formation of high temperature ceramic phases such as Mo_(2)C and MoB,and the improvement of the shear strength of the composites by the mica.The shear strength of MBm5-2 at room temperature reached 33.08 MPa,indicating that the improvement of the interlayer properties of the composites further improved its mechanical properties.
基金financially supported by the National Natural Science Foundation of China(No.52377025)。
文摘The most widely used bisphenol A-type epoxy resin(DGEBA)in electrical engineering demonstrates excellent mechanical and electrical properties.However,the insoluble and infusible characteristics of cured DGEBA make it difficult to efficiently degrade and recycle decommissioned electrical equipment.In this study,a degradable itaconic acid-based epoxy resin incorporating dynamic covalent bonds was prepared through the integration of ester bonds and disulfide bonds,with itaconic acid as the precursor.The covalent bonding effects on the mechanical,thermal,electrical,and degradation characteristics were systematically evaluated.The experimental results revealed that the introduction of dynamic ester bonds enhanced the mechanical properties and thermal stability of the resin system,achieving a flexural strength of 141.57 MPa and an initial decomposition temperature T_(5%)of up to 344.9℃.The resin system containing dynamic disulfide bonds exhibited a dielectric breakdown strength of 41.11 k V/mm.Simultaneously,the incorporation of disulfide bonds endowed the epoxy resin with remarkable degradability,enabling complete dissolution within 1.5 h at 90℃ in a mixed solution of dithiothreitol(DTT)and N-methylpyrrolidone(NMP).This research provides a valuable reference for the application of itaconic acid-based vitrimer with dynamic covalent bonds in electrical materials,contributing to the development and utilization of environmentally friendly electrical equipment.
基金supported by the National Natural Science Foundation of China(51673033 and 52073038)the Fundamental Research Funds for the Central Universities(DUT22LAB605).
文摘Heteroatom-doped porous carbon materials have been widely studied due to their high specific surface area and high heteroatom content,but it is difficult to achieve high specific surface area and high heteroatom content at the same time.Herein,a simple method is introduced to prepare N/O co-doped hierarchical porous carbon materials(DNZKs).Phthalonitrile resins(DNZs)were prepared by using 1,3-bis(3,4-dicyanophenoxy)benzene as raw material and ZnCl_(2)/urea as composite curing agent,and then using KOH as activator to successfully prepare DNZKs with high specific surface area,developed pores and high N/O content.The porous carbon material(DNZK@400)obtained at a curing temperature of 400℃ has the highest N content(4.97%(mass)),a large specific surface area(2026 m^(2)·g^(-1)),a high micropore proportion(0.9),a high O content(7.53%(mass)),and the best specific capacitance(up to 567 F·g^(-1) at 0.1 A·g^(-1)),which can be attribute to the high temperature resistance of the nitrogencontaining aromatic heterocyclic structure in DNZs.When the mass ratio of resin and KOH is 1:1,the specific capacitance of the sample tested by the acid three-electrode system is obtained,and it is found that the material has high cycling stability(119%specific capacitance retention after 100,000 cycle tests).This work proposes a simple and easy-to-operate method for the preparation of multifunctional porous carbon.
基金2023 Nantong Jianghai Talents Project,the Nantong Social Livelihood Science and Technology Plan for 2023the 2022 New Drugs and Platform Enhancement Project of the Yangtze Delta Drug Advanced Research Institute.Additionally,support was provided by the Zhenjiang Science and Technology Project(Grant No.SH2020048)+2 种基金the China Postdoctoral Science Foundation(Grant No.2020M681532)the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z209)the Natural Science Research Projects of Universities in Jiangsu Province(Grant No.20KJD350001).
文摘The aim of this study was to develop a novel pharmaceutical excipient:an anion exchange resin.Initially,polystyrenedivinylbenzene(PS-DVB)microspheres were synthesized via suspension polymerization.Subsequently,these microspheres served as a substrate for chloromethylation using methanol,formaldehyde,and chlorosulfonic acid.By optimizing the reaction conditions,the chloromethylated microspheres were characterized using infrared spectroscopy,scanning electron microscopy,and the Mohr method.Under optimal reaction conditions,the resulting products exhibited uniformity and spherical morphology,with an average particle size of approximately 190μm.The PS-DVB microspheres effectively incorporated chloromethyl groups,as evidenced by a chlorine content of 14.67%.Scanning electron microscopy analysis indicated that the appearance of the microspheres remained largely unchanged post-reaction.Overall,the research findings demonstrated the successful preparation of the anion exchange resin.Characterization and quality assessment confirmed that the ion exchange resin met the required standards.
基金supported by the National Natural Science Foundation of China(Nos.22475087 and 22205082)Natural Science Foundation of Jiangsu Province(No.BK20221098)+1 种基金Textile Light Applied Basic Research Project(No.J202107)Doctor Project of Innovation and Entrepreneurship in Jiangsu Province(No.JSSCBS20210821)。
文摘In this study,a novel CS@SA@ZIF-67 core-shell nano-hybrid was synthesized using zeolitic imidazole framework-67(ZIF-67)as a template and CS@SA@ZIF-67 as a modifier.Then,flame-retardant nanocomposites(EP/CS@SA@ZIF-67)were obtained by combining the hybrid with epoxy resins.The microstructure and morphology of CS@SA@ZIF-67 and the residual chars were explored using Fourier transform infrared(FTIR),scanning electron microscopy(SEM),and X-ray diffraction(XRD),and the effect of the obtained hybrid materials on the fire performance of the epoxy resins was characterized.Compared with the flame retardant system composed of ZIF-67 and pure EP,the hybrid flame retardant composites exhibited low total heat release and smoke production.The thermogravimetric analysis(TGA)results showed that the maximum thermal decomposition temperature of the EP/CS@SA@ZIF-67 based composite coating was stabilized at the highest value(378.2 and 563.9℃)so that the introduction of CS@SA@ZIF-67 could improve the thermal properties of the EP/CS@SA@ZIF-67 composites to a certain extent.Meanwhile,the cone test results indicated that the peak heat release rate pHRR of the CS@SA@ZIF-67 filled EP composite was reduced by 18.43%compared to that of pure EP,implying enhanced flame retardancy.The enhanced thermal stability and flame retardancy of the CS@SA@ZIF-67 composites were mainly ascribed to the catalytic effect and carbonization ability of CS@SA@ZIF-67.