By using φ-mapping method,we discuss the topological structure of the self-duality solution in Jackiw-Pimodel in terms of gauge potential decomposition.We set up relationship between Chern-Simons vortex solution andt...By using φ-mapping method,we discuss the topological structure of the self-duality solution in Jackiw-Pimodel in terms of gauge potential decomposition.We set up relationship between Chern-Simons vortex solution andtopological number,which is determined by Hopf index and Brouwer degree.We also give the quantization of flux inthis ease.Then,we study the angular momentum of the vortex,which can be expressed in terms of,the flux.展开更多
This paper studies the problem of diagnosis strategy for a doubly fed induction motor (DFIM) sensor faults. This strategy is based on unknown input proportional integral (PI) multiobserver. Thecontribution of this pap...This paper studies the problem of diagnosis strategy for a doubly fed induction motor (DFIM) sensor faults. This strategy is based on unknown input proportional integral (PI) multiobserver. Thecontribution of this paper is on one hand the creation of a new DFIM model based on multi-model approach and, on the other hand, the synthesis of an adaptive PI multi-observer. The DFIM Volt per Hertz drive system behaves as a nonlinear complex system. It consists of a DFIM powered through a controlled PWM Voltage Source Inverter (VSI). The need of a sensorless drive requires soft sensors such as estimators or observers. In particular, an adaptive Proportional-Integral multi-observer is synthesized in order to estimate the DFIM’s outputs which are affected by different faults and to generate the different residual signals symptoms of sensor fault occurrence. The convergence of the estimation error is guaranteed by using the Lyapunov’s based theory. The proposed diagnosis approach is experimentally validated on a 1 kW Induction motor. Obtained simulation results confirm that the adaptive PI multiobserver consent to accomplish the detection, isolation and fault identification tasks with high dynamic performances.展开更多
Friction drag primarily determines the total drag of transport systems. A promising approach to reduce drag at high Reynolds numbers(> 104) are active transversal surface waves in combination with passive methods l...Friction drag primarily determines the total drag of transport systems. A promising approach to reduce drag at high Reynolds numbers(> 104) are active transversal surface waves in combination with passive methods like a riblet surface. For the application in transportation systems with large surfaces such as airplanes, ships or trains, a large scale distributed real-time actuator and sensor network is required. This network is responsible for providing connections between a global flow control and distributed actuators and sensors. For the development of this network we established at first a small scale network model based on Simulink and True Time. To determine timescales for network events on different package sizes we set up a Raspberry Pi based testbed as a physical representation of our first model. These timescales are reduced to time differences between the deterministic network events to verify the behavior of our model. Experimental results were improved by synchronizing the testbed with sufficient precision. With this approach we assure a link between the large scale model and the later constructed microcontroller based real-time actuator and sensor network for distributed active turbulent flow control.展开更多
基金the CAS Knowledge Innovation Project under Grant No.kjcx3-syw-N2 and No.kjcx2-sw-N16National Natural Science Foundation of China under Grant Nos.10435080 and 10275123
文摘By using φ-mapping method,we discuss the topological structure of the self-duality solution in Jackiw-Pimodel in terms of gauge potential decomposition.We set up relationship between Chern-Simons vortex solution andtopological number,which is determined by Hopf index and Brouwer degree.We also give the quantization of flux inthis ease.Then,we study the angular momentum of the vortex,which can be expressed in terms of,the flux.
文摘This paper studies the problem of diagnosis strategy for a doubly fed induction motor (DFIM) sensor faults. This strategy is based on unknown input proportional integral (PI) multiobserver. Thecontribution of this paper is on one hand the creation of a new DFIM model based on multi-model approach and, on the other hand, the synthesis of an adaptive PI multi-observer. The DFIM Volt per Hertz drive system behaves as a nonlinear complex system. It consists of a DFIM powered through a controlled PWM Voltage Source Inverter (VSI). The need of a sensorless drive requires soft sensors such as estimators or observers. In particular, an adaptive Proportional-Integral multi-observer is synthesized in order to estimate the DFIM’s outputs which are affected by different faults and to generate the different residual signals symptoms of sensor fault occurrence. The convergence of the estimation error is guaranteed by using the Lyapunov’s based theory. The proposed diagnosis approach is experimentally validated on a 1 kW Induction motor. Obtained simulation results confirm that the adaptive PI multiobserver consent to accomplish the detection, isolation and fault identification tasks with high dynamic performances.
基金supported by German Research Foundation(DFG)(No.1779-WA3076/1-1)
文摘Friction drag primarily determines the total drag of transport systems. A promising approach to reduce drag at high Reynolds numbers(> 104) are active transversal surface waves in combination with passive methods like a riblet surface. For the application in transportation systems with large surfaces such as airplanes, ships or trains, a large scale distributed real-time actuator and sensor network is required. This network is responsible for providing connections between a global flow control and distributed actuators and sensors. For the development of this network we established at first a small scale network model based on Simulink and True Time. To determine timescales for network events on different package sizes we set up a Raspberry Pi based testbed as a physical representation of our first model. These timescales are reduced to time differences between the deterministic network events to verify the behavior of our model. Experimental results were improved by synchronizing the testbed with sufficient precision. With this approach we assure a link between the large scale model and the later constructed microcontroller based real-time actuator and sensor network for distributed active turbulent flow control.