This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insul...This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insulating composite panels made of bio-based phase change materials(bio-PCM is all from coconut oil),cement and renewable materials(treated wood fiber and organic clay).The inclusion of wood fibers improved the thermal properties;a simple 2%increase of wood fiber decreased the heat conductivity by approximately 23.42%.The issues of bio-PCM leakage in the cement mortar and a roughly 56.5%reduction in thermal conductivity with bio-PCM stability in composite panels can be resolved by treating wood fibers with an adjuvant by impregnating them in bio-PCM in the presence of the treated clay generated.Clay and wood fiber were treated with adjuvants that are both biological and environmentally acceptable,as confirmed by FTIR spectroscopy.The heat transfer bench(DIDATEK)showed a decrease in thermal conductivity.By using differential scanning calorimetric(DSC)analysis,the investigation of thermal stability and enthalpy during two heating cycles of pure bio-PCM and composite bio-PCM was validated.The novel renewable material was used to create composite panels for the trial prototype,which took the shape of a component attached to the solar heating system,33.57%less heat was lost,according to the heat transfer research.The outcomes demonstrated the possibility of replacing traditional electric water heating in residential buildings with solar water heating systems.展开更多
Performance enhancement of flat plate solar collectors is an endless research direction as it represents the most used solar technology.The enhancement could be achieved via design alteration,absorber-installed protru...Performance enhancement of flat plate solar collectors is an endless research direction as it represents the most used solar technology.The enhancement could be achieved via design alteration,absorber-installed protrusions,and integration with thermal energy storage.The objective of the current research is to evaluate a compacted solar collector integrated with octadecane organic paraffin PCM(phase change materials)as a thermal energy storage medium.The investigations have been performed numerically utilizing ANSYS software.Thermal storage contains the PCM securely encased behind the absorbent plate of the collector in four packing containers.The investigations have been performed without thermal energy storage and with nanoencapsulated thermal energy storage at 5%and 10%volume fractions.The optimal blend for the ongoing inquiry comprises two constituents:particulate octadecane and water as the primary fluid of operation.The findings suggest that in the morning,the nano-encapsulated PCM falls somewhere in the middle,between the absorbent copper plate’s temperature and the fluid temperature flowing out of the collector.However,the collector’s heat output is insufficient tomelt this thermal energy storagewhen its temperature drops overnight.5%by volume of nanoparticles was determined to be the ideal concentration.While increasing the volume percentage of nanoparticles inside PCM can sometimes boost the temperature of the fluid exiting,it does not necessarily improve performance.展开更多
Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was desi...Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was designed for cold storage applications.The optimal number of PCM plates was determined through numerical simulations to meet the required cold storage temperature and control time.Additionally,the air temperature field,flow field,and melting characteristics of the PCMplates during the cooling release process were analyzed.The effects of plate positioning and thickness on the cooling release performance were further investigated.The results indicated that when 64PCMplateswere used,the duration formaintaining temperatures below−18℃increased from0.6 h to approximately 16.94 h.During the cooling release process,the temperature field in the cold storage exhibited stratification,and the melting of the PCM plates was non-uniform.Placing the PCM plates at the top or within the interlayers without cargo above proved more effective,with their cooling release power being approximately twice that of the PCM plates placed in the interlayers with cargo above.Furthermore,reducing the thickness of the PCMplates from15 to 7.5mmresulted in a 3.6-h increase in the time below−18℃and a 4.5-h reduction in the time required to reach 80%liquid phase fraction.展开更多
Refrigeration systems are essential across various sectors,including food preservation,medical storage,and climate control.However,their high energy consumption and environmental impact necessitate innovative solution...Refrigeration systems are essential across various sectors,including food preservation,medical storage,and climate control.However,their high energy consumption and environmental impact necessitate innovative solutions to enhance efficiency while minimizing energy usage.This paper investigates the integration of Phase Change Materials(PCMs)into a vapor compression refrigeration system to enhance energy efficiency and temperature regulation for food preservation.A multifunctional prototype was tested under two configurations:(1)a standard thermally insulated room,and(2)the same room augmented with eutectic plates filled with either Glaceol(-10℃ melting point)or distilled water(0℃ melting point).Thermocouples were calibrated and deployed to record air and PCM temperatures during freeze–thaw cycles at thermostat setpoints of and Additionally,a-30℃ -35℃ .defrosting resistor and timer were added to mitigate frost buildup,a known cause of efficiency loss.The experimental results show that PCM-enhanced rooms achieved up to 10.98℃ greater temperature stability during defrost cycles and reduced energy consumption by as much as 7.76%(from 0.4584 to 0.4231 kWh/h).Moreover,the effectiveness of PCMs depended strongly on thermostat settings and PCM type,with distilled water demonstrating broader solidification across plates under higher ambient loads.These findings highlight the potential of PCM integration to improve cold-chain performance,offering rapid cooling,moisture retention,and extended product conservation during power interruptions.展开更多
PCM/PPK telemetry system is a multi-nary pulse modulation system.It is commonly used to transmit high-accuracy time information and some express signals.To the issue of security that telemetry data is transmitted in t...PCM/PPK telemetry system is a multi-nary pulse modulation system.It is commonly used to transmit high-accuracy time information and some express signals.To the issue of security that telemetry data is transmitted in the open space,a data encryption scheme in the PCM/PPK telemetry system is proposed.In this scheme,the PCM data of signal source are encrypted by stream cipher in which key streams are generated with clock control LSFR.The scheme can save system resource in the dual-modulation compound telemetry system.A backward key synchronization scheme is also proposed,which has the property of strong real-time and easy to implement.A simplified simulation model of PCM/PPK remote system is established based on the actual framework of telemetry system,and the model is simple and easy to simulate.The error performance of the system is analyzed in theory and tested by computer simulation.Also the security of the system is analyzed.The simulation and analysis results show that the encryption scheme can ensure the security of the telemetry data and does not cause error-diffusion.展开更多
Currently,people pay more and more attention to the transitional resettlement of victims after various natural disasters.There is an urgent need for a large number of temporary houses to resettle the victims after nat...Currently,people pay more and more attention to the transitional resettlement of victims after various natural disasters.There is an urgent need for a large number of temporary houses to resettle the victims after natural disasters.Disaster-relief temporary houses(DTHs)played an important role in the post-disaster resettlement in the past,which can not only be produced on a large scale,but also can be quickly and conveniently erected,which were the main means to solve the problem of transitional resettlement.However,due to their temporary nature,there was no extra energy consuming system installed in the DTHs generally.Hence the indoor thermal environment inside the DTHs was severe in summer.In this study,combined with the field experimental tests of the DTHs in Wenchuan Earthquake and Lushan Earthquake and the experimental study of the full-size DTH,it found that the thermal environment inside the DTH was intolerably high in summer.It had negative impact on victims.In order to improve the thermal environment inside DTHs during post-disaster period which lacked of extra energy resources,this study used the method of combining phase change materials(PCMs)with walls of the DTH to explore its feasibility and effectiveness.The results showed that PCMs could effectively improve the thermal environment inside the DTH in summer.Furthermore,the difference of the composite positions between PCMs and the wall affected the improvement effect.The energy release rate of the PCMs assembly system(PAS)varied according to the positions of the PCMs.展开更多
文摘This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insulating composite panels made of bio-based phase change materials(bio-PCM is all from coconut oil),cement and renewable materials(treated wood fiber and organic clay).The inclusion of wood fibers improved the thermal properties;a simple 2%increase of wood fiber decreased the heat conductivity by approximately 23.42%.The issues of bio-PCM leakage in the cement mortar and a roughly 56.5%reduction in thermal conductivity with bio-PCM stability in composite panels can be resolved by treating wood fibers with an adjuvant by impregnating them in bio-PCM in the presence of the treated clay generated.Clay and wood fiber were treated with adjuvants that are both biological and environmentally acceptable,as confirmed by FTIR spectroscopy.The heat transfer bench(DIDATEK)showed a decrease in thermal conductivity.By using differential scanning calorimetric(DSC)analysis,the investigation of thermal stability and enthalpy during two heating cycles of pure bio-PCM and composite bio-PCM was validated.The novel renewable material was used to create composite panels for the trial prototype,which took the shape of a component attached to the solar heating system,33.57%less heat was lost,according to the heat transfer research.The outcomes demonstrated the possibility of replacing traditional electric water heating in residential buildings with solar water heating systems.
文摘Performance enhancement of flat plate solar collectors is an endless research direction as it represents the most used solar technology.The enhancement could be achieved via design alteration,absorber-installed protrusions,and integration with thermal energy storage.The objective of the current research is to evaluate a compacted solar collector integrated with octadecane organic paraffin PCM(phase change materials)as a thermal energy storage medium.The investigations have been performed numerically utilizing ANSYS software.Thermal storage contains the PCM securely encased behind the absorbent plate of the collector in four packing containers.The investigations have been performed without thermal energy storage and with nanoencapsulated thermal energy storage at 5%and 10%volume fractions.The optimal blend for the ongoing inquiry comprises two constituents:particulate octadecane and water as the primary fluid of operation.The findings suggest that in the morning,the nano-encapsulated PCM falls somewhere in the middle,between the absorbent copper plate’s temperature and the fluid temperature flowing out of the collector.However,the collector’s heat output is insufficient tomelt this thermal energy storagewhen its temperature drops overnight.5%by volume of nanoparticles was determined to be the ideal concentration.While increasing the volume percentage of nanoparticles inside PCM can sometimes boost the temperature of the fluid exiting,it does not necessarily improve performance.
基金supported by National Natural Science Foundation of China(Nos.51806092,52201410)Non-Carbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program,High-End Foreign Experts Recruitment Plan of China(G2022013028L).
文摘Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was designed for cold storage applications.The optimal number of PCM plates was determined through numerical simulations to meet the required cold storage temperature and control time.Additionally,the air temperature field,flow field,and melting characteristics of the PCMplates during the cooling release process were analyzed.The effects of plate positioning and thickness on the cooling release performance were further investigated.The results indicated that when 64PCMplateswere used,the duration formaintaining temperatures below−18℃increased from0.6 h to approximately 16.94 h.During the cooling release process,the temperature field in the cold storage exhibited stratification,and the melting of the PCM plates was non-uniform.Placing the PCM plates at the top or within the interlayers without cargo above proved more effective,with their cooling release power being approximately twice that of the PCM plates placed in the interlayers with cargo above.Furthermore,reducing the thickness of the PCMplates from15 to 7.5mmresulted in a 3.6-h increase in the time below−18℃and a 4.5-h reduction in the time required to reach 80%liquid phase fraction.
基金supported in entire part by the Biomaterials and Transport Phenomena Laboratory Agreement No.30303-12-2003,at the University of Medea.
文摘Refrigeration systems are essential across various sectors,including food preservation,medical storage,and climate control.However,their high energy consumption and environmental impact necessitate innovative solutions to enhance efficiency while minimizing energy usage.This paper investigates the integration of Phase Change Materials(PCMs)into a vapor compression refrigeration system to enhance energy efficiency and temperature regulation for food preservation.A multifunctional prototype was tested under two configurations:(1)a standard thermally insulated room,and(2)the same room augmented with eutectic plates filled with either Glaceol(-10℃ melting point)or distilled water(0℃ melting point).Thermocouples were calibrated and deployed to record air and PCM temperatures during freeze–thaw cycles at thermostat setpoints of and Additionally,a-30℃ -35℃ .defrosting resistor and timer were added to mitigate frost buildup,a known cause of efficiency loss.The experimental results show that PCM-enhanced rooms achieved up to 10.98℃ greater temperature stability during defrost cycles and reduced energy consumption by as much as 7.76%(from 0.4584 to 0.4231 kWh/h).Moreover,the effectiveness of PCMs depended strongly on thermostat settings and PCM type,with distilled water demonstrating broader solidification across plates under higher ambient loads.These findings highlight the potential of PCM integration to improve cold-chain performance,offering rapid cooling,moisture retention,and extended product conservation during power interruptions.
文摘PCM/PPK telemetry system is a multi-nary pulse modulation system.It is commonly used to transmit high-accuracy time information and some express signals.To the issue of security that telemetry data is transmitted in the open space,a data encryption scheme in the PCM/PPK telemetry system is proposed.In this scheme,the PCM data of signal source are encrypted by stream cipher in which key streams are generated with clock control LSFR.The scheme can save system resource in the dual-modulation compound telemetry system.A backward key synchronization scheme is also proposed,which has the property of strong real-time and easy to implement.A simplified simulation model of PCM/PPK remote system is established based on the actual framework of telemetry system,and the model is simple and easy to simulate.The error performance of the system is analyzed in theory and tested by computer simulation.Also the security of the system is analyzed.The simulation and analysis results show that the encryption scheme can ensure the security of the telemetry data and does not cause error-diffusion.
文摘Currently,people pay more and more attention to the transitional resettlement of victims after various natural disasters.There is an urgent need for a large number of temporary houses to resettle the victims after natural disasters.Disaster-relief temporary houses(DTHs)played an important role in the post-disaster resettlement in the past,which can not only be produced on a large scale,but also can be quickly and conveniently erected,which were the main means to solve the problem of transitional resettlement.However,due to their temporary nature,there was no extra energy consuming system installed in the DTHs generally.Hence the indoor thermal environment inside the DTHs was severe in summer.In this study,combined with the field experimental tests of the DTHs in Wenchuan Earthquake and Lushan Earthquake and the experimental study of the full-size DTH,it found that the thermal environment inside the DTH was intolerably high in summer.It had negative impact on victims.In order to improve the thermal environment inside DTHs during post-disaster period which lacked of extra energy resources,this study used the method of combining phase change materials(PCMs)with walls of the DTH to explore its feasibility and effectiveness.The results showed that PCMs could effectively improve the thermal environment inside the DTH in summer.Furthermore,the difference of the composite positions between PCMs and the wall affected the improvement effect.The energy release rate of the PCMs assembly system(PAS)varied according to the positions of the PCMs.