Acupuncture,a therapeutic practice rooted in traditional Chinese medicine and integrated with modern neuroscience,achieves its effects by stimulating sensory nerves at specific anatomical points known as acupoints.Thi...Acupuncture,a therapeutic practice rooted in traditional Chinese medicine and integrated with modern neuroscience,achieves its effects by stimulating sensory nerves at specific anatomical points known as acupoints.This review systematically explores the therapeutic components of acupuncture,emphasizing the interplay between sensory nerve characteristics and neural signaling pathways.Key factors such as acupoint location,needling depth,stimulation intensity,retention time,and the induction of sensations(e.g.,Deqi)are analyzed for their roles in neural activation and clinical outcomes.The review highlights how variations in spinal segment targeting,tissue-specific receptor activation,and stimulation modalities(e.g.,manual acupuncture,electroacupuncture,moxibustion)influence therapeutic effects.Emerging evidence underscores the significance of ion channels,dermatomes,myotomes,and genespecific pathways in mediating systemic effects.Additionally,the differential roles of mechanical,thermal and nociceptive stimuli and the temporal dynamics of sensory and immune responses are addressed.While insights from animal models have advanced our understanding,their translation to clinical practice requires further investigation.This comprehensive review identifies critical parameters for optimizing acupuncture therapy,advocating for individualized treatment strategies informed by neuroanatomical and neurophysiological principles,ultimately enhancing its precision and efficacy in modern medicine.展开更多
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s...Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.展开更多
In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology bas...In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.展开更多
Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC...Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability.展开更多
Background:Rosa chinensis Jacq.and Rosa rugosa Thunb.are not only of ornamental value,but also edible flowers and the flower buds have been listed in the Chinese Pharmacopoeia as traditional medicines.The two plants h...Background:Rosa chinensis Jacq.and Rosa rugosa Thunb.are not only of ornamental value,but also edible flowers and the flower buds have been listed in the Chinese Pharmacopoeia as traditional medicines.The two plants have some differences in efficacy,but the flower buds are easily confused for similar traits.In addition,large-scale cultivation of ornamental rose flowers may lead to a decrease in the effective components of medicinal roses.Therefore,it is necessary to study the chemical composition and make quality evaluation of Rosae Chinensis Flos(Yueji)and Rosae Rugosae Flos(Meigui).Methods:In this study,40 batches of samples including Meigui and Yueji from different regions in China were collected to establish high-performance liquid chromatography fingerprints.Then,the fingerprints data was analyzed using principal component analysis,hierarchical cluster analysis,and partial least squares discriminant analysis analysis chemometrics to obtain information on intergroup differences,and non-targeted metabolomic techniques were applied to identify and compare chemical compositions of samples which were chosen from groups with large differences.Differential compounds were screened by orthogonal partial least-squares discriminant analysis and S-plot,and finally multi-component quantification was performed to comprehensively evaluate the quality of Yueji and Meigui.Results:The similarity between the fingerprints of 40 batches roses and the reference print R was 0.73 to 0.93,indicating that there were similarities and differences between the samples.Through principal component analysis and hierarchical cluster analysis of fingerprints data,the samples from different origins and varieties were intuitively divided into four groups.Partial least-squares discriminant analysis analysis showed that Meigui and Yueji cluster into two categories and the model was reliable.A total of 89 compounds were identified by high resolution mass spectrometry,mainly were flavonoids and flavonoid glycosides,as well as phenolic acids.Eight differential components were screened out by orthogonal partial least-squares discriminant analysis and S-plot analysis.Quantitative analyses of the eight compounds,including gallic acid,ellagic acid,hyperoside,isoquercitrin,etc.,showed that Yueji was generally richer in phenolic acids and flavonoids than Meigui,and the quality of Yueji from Shandong and Hebei was better.It is worth noting that Xinjiang rose is rich in various components,which is worth focusing on more in-depth research.Conclusion:In this study,the fingerprints of Meigui and Yueji were established.The chemical components information of roses was further improved based on non-targeted metabolomics and mass spectrometry technology.At the same time,eight differential components of Meigui and Yueji were screened out and quantitatively analyzed.The research results provided a scientific basis for the quality control and rational development and utilization of Rosae Chinensis Flos and Rosae Rugosae Flos,and also laid a foundation for the study of their pharmacodynamic material basis.展开更多
Dear Editor,Local recurrence and cervical lymph node metastases are major causes of mortality in patients with head and neck squamous cell carcinoma(HNSCC).To date,none of the proposed strategies for predicting outcom...Dear Editor,Local recurrence and cervical lymph node metastases are major causes of mortality in patients with head and neck squamous cell carcinoma(HNSCC).To date,none of the proposed strategies for predicting outcomes in this disease have proven fully effective,and a comprehensive physical examination remains the primary method for early detection and monitoring of HNSCC.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2020R1C1C1004107)。
文摘Acupuncture,a therapeutic practice rooted in traditional Chinese medicine and integrated with modern neuroscience,achieves its effects by stimulating sensory nerves at specific anatomical points known as acupoints.This review systematically explores the therapeutic components of acupuncture,emphasizing the interplay between sensory nerve characteristics and neural signaling pathways.Key factors such as acupoint location,needling depth,stimulation intensity,retention time,and the induction of sensations(e.g.,Deqi)are analyzed for their roles in neural activation and clinical outcomes.The review highlights how variations in spinal segment targeting,tissue-specific receptor activation,and stimulation modalities(e.g.,manual acupuncture,electroacupuncture,moxibustion)influence therapeutic effects.Emerging evidence underscores the significance of ion channels,dermatomes,myotomes,and genespecific pathways in mediating systemic effects.Additionally,the differential roles of mechanical,thermal and nociceptive stimuli and the temporal dynamics of sensory and immune responses are addressed.While insights from animal models have advanced our understanding,their translation to clinical practice requires further investigation.This comprehensive review identifies critical parameters for optimizing acupuncture therapy,advocating for individualized treatment strategies informed by neuroanatomical and neurophysiological principles,ultimately enhancing its precision and efficacy in modern medicine.
基金funded by the National Natural Science Foundation of China Youth Fund(Grant No.62304022)Science and Technology on Electromechanical Dynamic Control Laboratory(China,Grant No.6142601012304)the 2022e2024 China Association for Science and Technology Innovation Integration Association Youth Talent Support Project(Grant No.2022QNRC001).
文摘Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.
基金financially supported by National Key R&D Program(2021YFF0701905)。
文摘In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.
基金funding from the National Natural Science Foundation of China (Grant No.42277175)the pilot project of cooperation between the Ministry of Natural Resources and Hunan Province“Research and demonstration of key technologies for comprehensive remote sensing identification of geological hazards in typical regions of Hunan Province” (Grant No.2023ZRBSHZ056)the National Key Research and Development Program of China-2023 Key Special Project (Grant No.2023YFC2907400).
文摘Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability.
基金supported by the key project at the central government level:The ability establishment of sustainable use for valuable Chinese medicine resources(Grant number 2060302)the National Natural Science Foundation of China(Grant number 82373982,82173929).
文摘Background:Rosa chinensis Jacq.and Rosa rugosa Thunb.are not only of ornamental value,but also edible flowers and the flower buds have been listed in the Chinese Pharmacopoeia as traditional medicines.The two plants have some differences in efficacy,but the flower buds are easily confused for similar traits.In addition,large-scale cultivation of ornamental rose flowers may lead to a decrease in the effective components of medicinal roses.Therefore,it is necessary to study the chemical composition and make quality evaluation of Rosae Chinensis Flos(Yueji)and Rosae Rugosae Flos(Meigui).Methods:In this study,40 batches of samples including Meigui and Yueji from different regions in China were collected to establish high-performance liquid chromatography fingerprints.Then,the fingerprints data was analyzed using principal component analysis,hierarchical cluster analysis,and partial least squares discriminant analysis analysis chemometrics to obtain information on intergroup differences,and non-targeted metabolomic techniques were applied to identify and compare chemical compositions of samples which were chosen from groups with large differences.Differential compounds were screened by orthogonal partial least-squares discriminant analysis and S-plot,and finally multi-component quantification was performed to comprehensively evaluate the quality of Yueji and Meigui.Results:The similarity between the fingerprints of 40 batches roses and the reference print R was 0.73 to 0.93,indicating that there were similarities and differences between the samples.Through principal component analysis and hierarchical cluster analysis of fingerprints data,the samples from different origins and varieties were intuitively divided into four groups.Partial least-squares discriminant analysis analysis showed that Meigui and Yueji cluster into two categories and the model was reliable.A total of 89 compounds were identified by high resolution mass spectrometry,mainly were flavonoids and flavonoid glycosides,as well as phenolic acids.Eight differential components were screened out by orthogonal partial least-squares discriminant analysis and S-plot analysis.Quantitative analyses of the eight compounds,including gallic acid,ellagic acid,hyperoside,isoquercitrin,etc.,showed that Yueji was generally richer in phenolic acids and flavonoids than Meigui,and the quality of Yueji from Shandong and Hebei was better.It is worth noting that Xinjiang rose is rich in various components,which is worth focusing on more in-depth research.Conclusion:In this study,the fingerprints of Meigui and Yueji were established.The chemical components information of roses was further improved based on non-targeted metabolomics and mass spectrometry technology.At the same time,eight differential components of Meigui and Yueji were screened out and quantitatively analyzed.The research results provided a scientific basis for the quality control and rational development and utilization of Rosae Chinensis Flos and Rosae Rugosae Flos,and also laid a foundation for the study of their pharmacodynamic material basis.
文摘Dear Editor,Local recurrence and cervical lymph node metastases are major causes of mortality in patients with head and neck squamous cell carcinoma(HNSCC).To date,none of the proposed strategies for predicting outcomes in this disease have proven fully effective,and a comprehensive physical examination remains the primary method for early detection and monitoring of HNSCC.