期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Physics-based modeling and mechanism of polycrystalline diamond tool wear in milling of 70 vol%Si/Al composite
1
作者 Lianjia Xin Guolong Zhao +3 位作者 Zhiwen Nian Haotian Yang Liang Li Ning He 《International Journal of Extreme Manufacturing》 2025年第5期336-356,共21页
High-volume fraction silicon particle-reinforced aluminium matrix composites(Si/Al)are increasingly applied in aerospace,radar communications,and large-scale integrated circuits because of their superior thermal condu... High-volume fraction silicon particle-reinforced aluminium matrix composites(Si/Al)are increasingly applied in aerospace,radar communications,and large-scale integrated circuits because of their superior thermal conductivity,wear resistance,and low thermal expansion coefficient.However,the abrasive and adhesive wear caused by the hard silicon reinforcement and the ductile aluminium matrix leads to significant tool wear,decreased machining efficiency,and compromised surface quality.This study combines theoretical analysis and cutting experiments to investigate polycrystalline diamond(PCD)tool wear during milling of 70 vol%Si/Al composite.A key contribution of this work is the development of a tool wear model that incorporates reinforcement particle characteristics,treating them as ellipsoidal structures,which enhances the accuracy of predicting abrasive and adhesive wear mechanisms.The model is based on abrasive and adhesive wear mechanisms,and can analyze the interaction between silicon particles,aluminium matrix,and tool components,thus providing deeper insights into PCD tool wear processes.Experimental validation of the model shows a good agreement with the results,with a mean deviation of approximately 10%.The findings on the tool wear mechanism reveal that,as tool wear progresses,the proportion of abrasive wear increases from 40%in the running-in stage to 75%in the rapid wear stage,while adhesive wear decreases.The optimal machining parameters of 120 m·min^(–1) cutting speed(v_(c))and 0.04 mm·z^(–1) feed rate(f_(z)),result in tool life of 33 min and surface roughness(S_(a))of 2.2μm.The study uncovers the variation patterns of abrasive and adhesive wear during the tool wear process,and the proposed model offers a robust framework for predicting tool wear during the machining of high-volume fraction Si/Al composites.The research findings also offer key insights for optimizing tool selection and machining parameters,advancing both the theoretical understanding and practical application of PCD tool wear. 展开更多
关键词 70 vol%Si/Al composite tool wear pcd tools theoretical model mesoscopic feature
在线阅读 下载PDF
Research on the Surface Micro-configuration in Vibration Cutting Particle Reinforced Metallic Matrix Composites SiC_p/Al
2
作者 ZHAO Bo 1,2, LIU Chuan-shao 2, ZHU Xun-sheng 1, XU Ke-wei 1 (1. Institute of Mechanical Engineering, Shanghai Jiaotong U niversity, Shanghai 200030, China 2. Department of Mechanical Engineering, Jiaozuo Institute of Technology, Hena n 454000, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期71-72,共2页
The cutting performance of particulate reinforced me tallic matrix composites(PRMMCs) SiC p/Al in ultrasonic vibration cutting and c ommon cutting with carbide tools and PCD tools was researched in the paper. Mic rost... The cutting performance of particulate reinforced me tallic matrix composites(PRMMCs) SiC p/Al in ultrasonic vibration cutting and c ommon cutting with carbide tools and PCD tools was researched in the paper. Mic rostructure of machined surface was described, the relation between cutting para meters and surface roughness was presented, and characteristic of the surface re mained stress was also presented. Furthermore, wear regularity and abrasion resi stance ability of tools in ultrasonic vibration cutting and common cutting o f PRMMCs were discussed in detail. The test results show: (1) The surface config urations are obviously different when using different tools to machine such PRMM Cs. The surface machined with carbide tools looks luminous and orderly and there are seldom surface defects on it. The reason is that the soft basal body is apt to flow during cutting, therefore a layer of Al matrix film covers machined sur face. On the contrary, the surface machined with PCD tools looks lackluster. But the profile of machined surface is very clear. Superfine grooves, pits and blac k reinforce particulates can be seen easily without obvious Al film. (2) Because of unstable cutting process in common cutting, the surface is easy to produce s ome defects such as burrs, built-up edges and so on so that the quality of surf ace becomes very poor. Vibration cutting can reduce the influence of tearing, pl astic deformation and built-up edge in cutting and can restrain flutter so as t o make cutting process more stable. Therefore, surface roughness of vibration cu tting is better than that of common cutting. (3) There is an optimum value of fe ed rate in vibration cutting of PRMMCs due to the influence of material characte ristics. Whether feed rate is more than or less than this optimum value, surface roughness will increase. (4) According to analyzing the wear rate of tools in v ibration cutting PRMMCs, it can be concluded that abrasion resistance of tools w ill be improved remarkably when vibration cutting composites have a lower pe rcentage of reinforce particulate. If the percentage of reinforce particulate is higher, the influence on abrasion resistance of carbide tool in vibration cut ting will not be obvious. The research result indicates that vibration cutting effect has a close relation with material characteristics. 展开更多
关键词 pcd tools composite SiC p/Al surface micro-c onfiguration tool wear
在线阅读 下载PDF
Tool wear during high speed turning in situ TiC_p/TiB_w hybrid reinforced Ti-6Al-4V matrix composite 被引量:3
3
作者 Ge Yingfei Xu Jiuhua Huan Haixiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1425-1435,共11页
Chipping, adhesive wear, abrasive wear and crater wear are prevalent for both the polycrystalline diamond (PCD) and the carbide tools during high speed turning of TiCp/TiBw hybrid reinforced Ti-6Al-4V (TC4) matrix... Chipping, adhesive wear, abrasive wear and crater wear are prevalent for both the polycrystalline diamond (PCD) and the carbide tools during high speed turning of TiCp/TiBw hybrid reinforced Ti-6Al-4V (TC4) matrix composite (TMCs). The combined effects of abrasive wear and diffusion wear caused the big crater on PCD and carbide tool rake face. Compared to the PCD, bigger size of crater was found on the carbide tool due to much higher cutting temperature and the violent chemical reaction between the Ti element in the workpiece and the WC in the tool. However, the marks of the abrasive wear looked much slighter or even could not be observed on the carbide tool especially when low levels of cutting parameters were used, which attributes to much lower hardness and smaller size of WC combined with more significant chemical degradation of carbide. When cutting TC4 using PCD tool, notch wear was the most significant wear pattern which was not found when cutting the TMCs. However, chipping, adhesive wear and crater wear were much milder when compared to the cutting of titanium matrix composite. Due to the absence of abrasive wear when cutting TC4, the generated titanium carbide on the PCD protected the tool from fast wear, which caused that the tool life for TC4 was 6-10 times longer than that for TMCs. 展开更多
关键词 Carbide tool High speed cutting pcd tool Titanium matrix composite Tool wear TURNING
原文传递
Research on the Characters of the Cutting Force in Vibration Cutting Particle Reinforced Metal Matrix Composites SiC_p/Al 被引量:3
4
作者 LIU Chuan-shao 1, ZHAO Bo 1,2, GAO Guo-fu 1, JIAO F eng 1 (1. Department of Mechanical Engineering, Jiaozuo Institute of Techno logy, Henan 454000, China 2. Institute of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200030, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期74-75,共2页
In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning com... In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing thin-wall pieces. 展开更多
关键词 composite SiC p/Al pcd tool ultrasonic vibrati on turning cutting force
在线阅读 下载PDF
Cutting force and its frequency spectrum characteristics in high speed milling of titanium alloy with a polycrystalline diamond tool 被引量:4
5
作者 Peng LIU Jiu-hua XU Yu-can FU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第1期56-62,共7页
In this paper, a series of experiments were performed by high speed milling of Ti-6.5Al-2Zr-1Mo-1V (TA15) by use of polycrystalline diamond (PCD) tools. The characteristics of high speed machining (HSM) dynamic millin... In this paper, a series of experiments were performed by high speed milling of Ti-6.5Al-2Zr-1Mo-1V (TA15) by use of polycrystalline diamond (PCD) tools. The characteristics of high speed machining (HSM) dynamic milling forces were investi- gated. The effects of the parameters of the process, i.e., cutting speed, feed per tooth, and depth of axial cut, on cutting forces were studied. The cutting force signals under different cutting speed conditions and different cutting tool wear stages were analyzed by frequency spectrum analysis. The trend and frequency domain aspects of the dynamic forces were evaluated and discussed. The results indicate that a characteristic frequency in cutting force power spectrum does in fact exist. The amplitudes increase with the increase of cutting speed and tool wear level, which could be applied to the monitoring of the cutting process. 展开更多
关键词 Cutting force High speed milling Polycrystalline diamond pcd tool Frequency spectrum analysis Titanium alloy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部