We proposed a generalized adaptive learning rate (GALR) PCA algorithm, which could be guaranteed that the algorithm’s convergence process would not be affected by the selection of the initial value. Using the determi...We proposed a generalized adaptive learning rate (GALR) PCA algorithm, which could be guaranteed that the algorithm’s convergence process would not be affected by the selection of the initial value. Using the deterministic discrete time (DDT) method, we gave the upper and lower bounds of the algorithm and proved the global convergence. Numerical experiments had also verified our theory, and the algorithm is effective for both online and offline data. We found that choosing different initial vectors will affect the convergence speed, and the initial vector could converge to the second or third eigenvectors by satisfying some exceptional conditions.展开更多
A numerical algorithm of principal component analysis (PCA) is proposed and its application in remote sensing image processing is introduced: (1) Multispectral image compression;(2) Multi-spectral image noise cancella...A numerical algorithm of principal component analysis (PCA) is proposed and its application in remote sensing image processing is introduced: (1) Multispectral image compression;(2) Multi-spectral image noise cancellation;(3) Information fusion of multi-spectral images and spot panchromatic images. The software experiments verify and evaluate the effectiveness and accuracy of the proposed algorithm.展开更多
文摘We proposed a generalized adaptive learning rate (GALR) PCA algorithm, which could be guaranteed that the algorithm’s convergence process would not be affected by the selection of the initial value. Using the deterministic discrete time (DDT) method, we gave the upper and lower bounds of the algorithm and proved the global convergence. Numerical experiments had also verified our theory, and the algorithm is effective for both online and offline data. We found that choosing different initial vectors will affect the convergence speed, and the initial vector could converge to the second or third eigenvectors by satisfying some exceptional conditions.
文摘A numerical algorithm of principal component analysis (PCA) is proposed and its application in remote sensing image processing is introduced: (1) Multispectral image compression;(2) Multi-spectral image noise cancellation;(3) Information fusion of multi-spectral images and spot panchromatic images. The software experiments verify and evaluate the effectiveness and accuracy of the proposed algorithm.