Density(p),speed of sound(u),viscosity(η),and refractive index(n_(D))were measured for pure acetonitrile,trichloroethene,and tetrachloroethene,as well as their binary mixtures at temperatures T=(293.15,298.15,303.15)...Density(p),speed of sound(u),viscosity(η),and refractive index(n_(D))were measured for pure acetonitrile,trichloroethene,and tetrachloroethene,as well as their binary mixtures at temperatures T=(293.15,298.15,303.15)K and at ambient pressure(81.5 kPa).From the experimental data,excess molar volume(V_(m)~E),thermal expansion coefficients(α),deviations in isentropic compressibility(Δκ_(S)),viscosity(Δ_η),and refractive index(Δn_(D))were calculated.These values were then correlated using the Redlich-Kister polynomial equation,with fitting coefficients and standard deviations determined.Additionally,the Prigogine-Flory-Patterson(PFP)theory and the Extended Real Associated Solution(ERAS)model were employed to correlate the excess molar volume,while the Perturbed Chain Statistical Associating Fluid Theory(PC-SAFT)was used to predict the density of mixtures.展开更多
Biological solubility is one of the important basic parameters in the development process of poorly soluble drugs,but the current measurement methods are mainly based on a large number of experiments,which are time-co...Biological solubility is one of the important basic parameters in the development process of poorly soluble drugs,but the current measurement methods are mainly based on a large number of experiments,which are time-consuming and cost-intensive.There is still a lack of effective theoretical models to accurately describe and predict the biological solubility of drugs to reduce costs.Therefore,in this study,osaprazole and irbesartan were selected as model drugs,and their solubility in solutions containing surfactants and biorelevant media was measured experimentally.By calculating the parameters of each component using the perturbed-chain statistical associating fluid theory(PC-SAFT)model,combined with pH-dependent and micellar solubilization models,the thermodynamic phase behavior of the two drugs was successfully modeled,and the predicted results were in good agreement with the experimental values.These results demonstrate that the model combination used provides important basic parameters and theoretical guidance for the development and screening of poorly soluble drugs and related formulations.展开更多
基金Bu-Ali Sina University for providing financial support for conducting this study。
文摘Density(p),speed of sound(u),viscosity(η),and refractive index(n_(D))were measured for pure acetonitrile,trichloroethene,and tetrachloroethene,as well as their binary mixtures at temperatures T=(293.15,298.15,303.15)K and at ambient pressure(81.5 kPa).From the experimental data,excess molar volume(V_(m)~E),thermal expansion coefficients(α),deviations in isentropic compressibility(Δκ_(S)),viscosity(Δ_η),and refractive index(Δn_(D))were calculated.These values were then correlated using the Redlich-Kister polynomial equation,with fitting coefficients and standard deviations determined.Additionally,the Prigogine-Flory-Patterson(PFP)theory and the Extended Real Associated Solution(ERAS)model were employed to correlate the excess molar volume,while the Perturbed Chain Statistical Associating Fluid Theory(PC-SAFT)was used to predict the density of mixtures.
基金the financial support from the National Natural Science Foundation of China(22278070,21978047,21776046)。
文摘Biological solubility is one of the important basic parameters in the development process of poorly soluble drugs,but the current measurement methods are mainly based on a large number of experiments,which are time-consuming and cost-intensive.There is still a lack of effective theoretical models to accurately describe and predict the biological solubility of drugs to reduce costs.Therefore,in this study,osaprazole and irbesartan were selected as model drugs,and their solubility in solutions containing surfactants and biorelevant media was measured experimentally.By calculating the parameters of each component using the perturbed-chain statistical associating fluid theory(PC-SAFT)model,combined with pH-dependent and micellar solubilization models,the thermodynamic phase behavior of the two drugs was successfully modeled,and the predicted results were in good agreement with the experimental values.These results demonstrate that the model combination used provides important basic parameters and theoretical guidance for the development and screening of poorly soluble drugs and related formulations.