传统双向E型无线电能传输(wireless power transfer,WPT)拓扑易进入硬开关状态,导致电能传输效率低。针对此,该文提出无线电能传输系统的改进E^(#)型拓扑及其移相控制策略。首先,构建软开关状态负载范围更宽的双向E^(#)型WPT电路拓扑数...传统双向E型无线电能传输(wireless power transfer,WPT)拓扑易进入硬开关状态,导致电能传输效率低。针对此,该文提出无线电能传输系统的改进E^(#)型拓扑及其移相控制策略。首先,构建软开关状态负载范围更宽的双向E^(#)型WPT电路拓扑数学模型,分析并提取电路实现软开关工作状态的关键变量与约束条件,理论上证明所提拓扑的有效性。然后,推导电路中线圈互感和负载阻抗等参数的解析关系式,并基于此提出可保证系统在负载时始终处于最佳工作状态的移相控制策略。该策略通过控制开关管的门极驱动信号相位,使谐振元件内部储存的能量提前或者滞后释放,从而将开关管修正回软开关状态。最后,通过仿真和实验验证所提双向E^(#)型WPT系统的有效性。实验结果表明,所提方法可保证在5~30Ω的负载范围内电路工作在软开关状态,该范围内的电能传输效率峰值达84.3%。展开更多
无线电能传输(Wireless Power Transmission,WPT)系统在实际应用中存在高频功率源电能转换效率低、阻抗匹配不精准等问题,因此文章设计一种磁耦合谐振式高效无线电能传输装置,在保证无线电能传输切实可行的前提下,提升系统整体性能。首...无线电能传输(Wireless Power Transmission,WPT)系统在实际应用中存在高频功率源电能转换效率低、阻抗匹配不精准等问题,因此文章设计一种磁耦合谐振式高效无线电能传输装置,在保证无线电能传输切实可行的前提下,提升系统整体性能。首先,构建等效电路模型,分析WPT系统的传输效率、功率特性;其次,详细分析E类放大器的工作原理,并给出参数设计方法;再次,研究接收端整流调压电路的阻抗匹配问题,为提高无线电能传输功率和效率提供参考;最后,通过仿真验证磁耦合谐振式无线电能传输系统的可行性,输出功率为168.91 W,效率为91.52%。展开更多
文摘传统双向E型无线电能传输(wireless power transfer,WPT)拓扑易进入硬开关状态,导致电能传输效率低。针对此,该文提出无线电能传输系统的改进E^(#)型拓扑及其移相控制策略。首先,构建软开关状态负载范围更宽的双向E^(#)型WPT电路拓扑数学模型,分析并提取电路实现软开关工作状态的关键变量与约束条件,理论上证明所提拓扑的有效性。然后,推导电路中线圈互感和负载阻抗等参数的解析关系式,并基于此提出可保证系统在负载时始终处于最佳工作状态的移相控制策略。该策略通过控制开关管的门极驱动信号相位,使谐振元件内部储存的能量提前或者滞后释放,从而将开关管修正回软开关状态。最后,通过仿真和实验验证所提双向E^(#)型WPT系统的有效性。实验结果表明,所提方法可保证在5~30Ω的负载范围内电路工作在软开关状态,该范围内的电能传输效率峰值达84.3%。
文摘无线电能传输(Wireless Power Transmission,WPT)系统在实际应用中存在高频功率源电能转换效率低、阻抗匹配不精准等问题,因此文章设计一种磁耦合谐振式高效无线电能传输装置,在保证无线电能传输切实可行的前提下,提升系统整体性能。首先,构建等效电路模型,分析WPT系统的传输效率、功率特性;其次,详细分析E类放大器的工作原理,并给出参数设计方法;再次,研究接收端整流调压电路的阻抗匹配问题,为提高无线电能传输功率和效率提供参考;最后,通过仿真验证磁耦合谐振式无线电能传输系统的可行性,输出功率为168.91 W,效率为91.52%。