Overdriven detonation(ODD)in high explosives can be generated by Mach reflection of conical detonation waves propagating quasi-steadily in a co-axial double layer cylindrical charge.The inner core of the charge cons...Overdriven detonation(ODD)in high explosives can be generated by Mach reflection of conical detonation waves propagating quasi-steadily in a co-axial double layer cylindrical charge.The inner core of the charge consists of lower detonation velocity explosive with higher detonation velocity explosive for the outer core.The calculated pressures and detonation velocities in the ODD regime are compared with available results in the literature.The application of this technique to design a double layer shaped charge(DLSC)is numerically studied.It was discovered that the use of lower density-lower detonation velocity explosive in the inner core of DLSC can also yield similar results to those obtained with high density lower detonation velocity explosive.By analyzing previous experimental results and comparing with present simulations,it is demonstrated that ordinary shaped charges have some advantages over DLSC under certain conditions.展开更多
The cell size variation in overdriven gaseous detonations is studied in hydrogen/oxygen and acetylene/oxygen mixtures.The local self-similarity of Mach reflection of detonations on the wedge in the far field renders t...The cell size variation in overdriven gaseous detonations is studied in hydrogen/oxygen and acetylene/oxygen mixtures.The local self-similarity of Mach reflection of detonations on the wedge in the far field renders the presence of a steady overdriven Mach stem to be possible.The study focuses on the cell size change of overdriven Mach stem on the wedge surface other than on the sidewall.The detonation cell pattern on the wedge surface has a complicated process of three-stage pattern,i.e.,the cells decreasing from large to small size,and then increasing asymptotically to a medium size and keeping constant.The cell size ratio with increasing the degree of overdrive is also examined.It is found that the ratio decays as the degree of overdrive increases.However,as the wedge angle increases to a critical value,finer cells are not created on the smoke foils.Ng’s model used to predict the cell size is also found to be valid only for detonations with relative large instability parameters,but presents large errors for highly overdriven detonations with low instability.A modification to Ng’s model is proposed based on the experimental results.展开更多
To explore the design criteria for composite charges and reveal the intrinsic relationship between the detonation wave propagation in composite charges and the overall energy distribution of shock waves,this study ana...To explore the design criteria for composite charges and reveal the intrinsic relationship between the detonation wave propagation in composite charges and the overall energy distribution of shock waves,this study analyzes the propagation and interaction processes of detonation waves in composite charges with different structural dimensions and explosive combinations. It also investigates the spatial distribution characteristics of the resulting shock wave loads. Based on dimensional analysis theory, a theoretical analysis of the shock wave overpressure distribution in free air fields is conducted. Utilizing the derived dimensionless function relationships, the hydrocode AUTODYN is employed to investigate the effects of charge structure parameters and explosive combinations on the internal overdriven detonation phenomena and the distribution of shock wave loads. It is found that the overdriven detonation phenomenon in the inner layer of composite charges increases the strength of the axial detonation wave,thereby enhancing the intensity of the primary end wave formed upon refraction into the air, which affects the distribution characteristics of the shock wave overpressure. Research has shown that increasing the thickness ratio and detonation velocity ratio of composite charges is beneficial for exacerbating the phenomenon of overdriven detonation, improving the primary end wave intensity and axial overpressure. This gain effect gradually weakens with the propagation of shock waves. When overdriven detonation occurs inside the composite charge, the detonation pressure first increases and then decreases. The Mach reflection pressure of the composite charge with a larger aspect ratio is attenuated to a greater extent. In addition, as the aspect ratio of the composite charge increases, the shock wave energy gradually flows from the axial direction to the radial direction. Therefore, as the aspect ratio of the composite charge increases, the primary end wave intensity and axial overpressure gradually decrease.展开更多
基金Supported by the National Natural Science Foundation of China(11272059,11221202)Program for New Century Excellent Talents in University(NCET-12-0037)
文摘Overdriven detonation(ODD)in high explosives can be generated by Mach reflection of conical detonation waves propagating quasi-steadily in a co-axial double layer cylindrical charge.The inner core of the charge consists of lower detonation velocity explosive with higher detonation velocity explosive for the outer core.The calculated pressures and detonation velocities in the ODD regime are compared with available results in the literature.The application of this technique to design a double layer shaped charge(DLSC)is numerically studied.It was discovered that the use of lower density-lower detonation velocity explosive in the inner core of DLSC can also yield similar results to those obtained with high density lower detonation velocity explosive.By analyzing previous experimental results and comparing with present simulations,it is demonstrated that ordinary shaped charges have some advantages over DLSC under certain conditions.
基金This work was funded by the National Natural Science Foundation of China(Grants 12072036 and 11532012)Project of State Key Laboratory of Explosion Science and Technology(Grant QNKT19-01).
文摘The cell size variation in overdriven gaseous detonations is studied in hydrogen/oxygen and acetylene/oxygen mixtures.The local self-similarity of Mach reflection of detonations on the wedge in the far field renders the presence of a steady overdriven Mach stem to be possible.The study focuses on the cell size change of overdriven Mach stem on the wedge surface other than on the sidewall.The detonation cell pattern on the wedge surface has a complicated process of three-stage pattern,i.e.,the cells decreasing from large to small size,and then increasing asymptotically to a medium size and keeping constant.The cell size ratio with increasing the degree of overdrive is also examined.It is found that the ratio decays as the degree of overdrive increases.However,as the wedge angle increases to a critical value,finer cells are not created on the smoke foils.Ng’s model used to predict the cell size is also found to be valid only for detonations with relative large instability parameters,but presents large errors for highly overdriven detonations with low instability.A modification to Ng’s model is proposed based on the experimental results.
基金funded by the National Natural Science Foundation of China(Grant No. 12302437)Jiangsu Provincial Natural Science Foundation (Grant No.SBK2023045424)。
文摘To explore the design criteria for composite charges and reveal the intrinsic relationship between the detonation wave propagation in composite charges and the overall energy distribution of shock waves,this study analyzes the propagation and interaction processes of detonation waves in composite charges with different structural dimensions and explosive combinations. It also investigates the spatial distribution characteristics of the resulting shock wave loads. Based on dimensional analysis theory, a theoretical analysis of the shock wave overpressure distribution in free air fields is conducted. Utilizing the derived dimensionless function relationships, the hydrocode AUTODYN is employed to investigate the effects of charge structure parameters and explosive combinations on the internal overdriven detonation phenomena and the distribution of shock wave loads. It is found that the overdriven detonation phenomenon in the inner layer of composite charges increases the strength of the axial detonation wave,thereby enhancing the intensity of the primary end wave formed upon refraction into the air, which affects the distribution characteristics of the shock wave overpressure. Research has shown that increasing the thickness ratio and detonation velocity ratio of composite charges is beneficial for exacerbating the phenomenon of overdriven detonation, improving the primary end wave intensity and axial overpressure. This gain effect gradually weakens with the propagation of shock waves. When overdriven detonation occurs inside the composite charge, the detonation pressure first increases and then decreases. The Mach reflection pressure of the composite charge with a larger aspect ratio is attenuated to a greater extent. In addition, as the aspect ratio of the composite charge increases, the shock wave energy gradually flows from the axial direction to the radial direction. Therefore, as the aspect ratio of the composite charge increases, the primary end wave intensity and axial overpressure gradually decrease.