Under the hypotheses that the second-order and third-order derivatives of a function are bounded, an estimate of the radius of the convergence ball of Ostrowski-Traub's method is obtained. An error analysis is given ...Under the hypotheses that the second-order and third-order derivatives of a function are bounded, an estimate of the radius of the convergence ball of Ostrowski-Traub's method is obtained. An error analysis is given which matches the convergence order of the method. Finally, two examples are provided to show applications of our theorem.展开更多
In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation ...In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation of this strategy increases the order of Ostrowski’s method from four to eight and its efficiency index from 1.587 to 1.682. The methods are compared with closest competitors in a series of numerical examples. Moreover, theoretical order of convergence is verified on the examples.展开更多
In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods ...In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods is that they perform better and moreover, have the same efficiency indices as that of existing multipoint iterative methods. Furthermore, the convergence analysis of the new methods is discussed and several examples are given to illustrate their efficiency.展开更多
In this paper, based on fourth order Ostrowski method, we derive an optimal eighth order iteration scheme for obtaining simple roots of nonlinear equations using Lagrange interpolation and suitable weight functions. T...In this paper, based on fourth order Ostrowski method, we derive an optimal eighth order iteration scheme for obtaining simple roots of nonlinear equations using Lagrange interpolation and suitable weight functions. The scheme requires three evaluations of the function and one evaluation of the first derivative per iteration. Numerical examples are included to confirm the theoretical results and to show the competitive performance of the proposed iteration scheme.展开更多
基金Supported by the National Natural Science Foundation of China (10871178)the Natural Science Foundation(Y606154)the Foundation of the Eduction Department of Zhejiang Province of China (Y200804008)
文摘Under the hypotheses that the second-order and third-order derivatives of a function are bounded, an estimate of the radius of the convergence ball of Ostrowski-Traub's method is obtained. An error analysis is given which matches the convergence order of the method. Finally, two examples are provided to show applications of our theorem.
文摘In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation of this strategy increases the order of Ostrowski’s method from four to eight and its efficiency index from 1.587 to 1.682. The methods are compared with closest competitors in a series of numerical examples. Moreover, theoretical order of convergence is verified on the examples.
文摘In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods is that they perform better and moreover, have the same efficiency indices as that of existing multipoint iterative methods. Furthermore, the convergence analysis of the new methods is discussed and several examples are given to illustrate their efficiency.
基金the I.K. Gujral Punjab Technical University, Kapurthala for providing research support
文摘In this paper, based on fourth order Ostrowski method, we derive an optimal eighth order iteration scheme for obtaining simple roots of nonlinear equations using Lagrange interpolation and suitable weight functions. The scheme requires three evaluations of the function and one evaluation of the first derivative per iteration. Numerical examples are included to confirm the theoretical results and to show the competitive performance of the proposed iteration scheme.