期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Convergence ball and error analysis of Ostrowski-Traub’s method 被引量:1
1
作者 BI Wei-hong WU Qing-biao REN Hong-min 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第3期374-378,共5页
Under the hypotheses that the second-order and third-order derivatives of a function are bounded, an estimate of the radius of the convergence ball of Ostrowski-Traub's method is obtained. An error analysis is given ... Under the hypotheses that the second-order and third-order derivatives of a function are bounded, an estimate of the radius of the convergence ball of Ostrowski-Traub's method is obtained. An error analysis is given which matches the convergence order of the method. Finally, two examples are provided to show applications of our theorem. 展开更多
关键词 ostrowski-Traub's method nonlinear equation convergence ball estimate of radius error analysis
在线阅读 下载PDF
Improved Ostrowski-Like Methods Based on Cubic Curve Interpolation
2
作者 Janak Raj Sharma Rangan Kumar Guha Rajni Sharma 《Applied Mathematics》 2011年第7期816-823,共8页
In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation ... In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation of this strategy increases the order of Ostrowski’s method from four to eight and its efficiency index from 1.587 to 1.682. The methods are compared with closest competitors in a series of numerical examples. Moreover, theoretical order of convergence is verified on the examples. 展开更多
关键词 Nonlinear EQUATIONS ostrowski’s method ROOT-FINDING Order of CONVERGENCE CUBIC INTERPOLATION
在线阅读 下载PDF
一类改进的Ostrowski方法
3
作者 王秀花 刘丁酉 寇继生 《湖北民族学院学报(自然科学版)》 CAS 2008年第3期326-328,共3页
求解非线性方程是数值分析中一个非常重要的问题.提出了一类收敛阶为7的改进Ostrowski方法.新方法的每一步迭代需要3个函数值和1个一阶导数值,因而这类方法的效率指数为1.627.数值实例表明此方法是有效的.
关键词 非线性方程 ostrowski方法 迭代法
在线阅读 下载PDF
一类改进的Ostrowski方法
4
作者 于双红 何国龙 《浙江师范大学学报(自然科学版)》 CAS 2011年第4期385-392,共8页
提出了一类8阶的改进的Ostrowski方法.每一步迭代需要求3个函数值和1个一阶导数值,因而此方法的效率指数为1.682.数值实例表明了此方法的有效性.
关键词 非线性方程 ostrowski方法 收敛阶 效率指数
在线阅读 下载PDF
Modified Efficient Families of Two and Three-Step Predictor-Corrector Iterative Methods for Solving Nonlinear Equations
5
作者 Sanjeev Kumar Vinay Kanwar Sukhjit Singh 《Applied Mathematics》 2010年第3期153-158,共6页
In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods ... In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods is that they perform better and moreover, have the same efficiency indices as that of existing multipoint iterative methods. Furthermore, the convergence analysis of the new methods is discussed and several examples are given to illustrate their efficiency. 展开更多
关键词 Nonlinear Equations ITERATIVE methodS Multipoint ITERATIVE methodS Newton’s method Traub-ostrowski’s method PREDICTOR-CORRECTOR methodS Order of Convergence
在线阅读 下载PDF
关于Laguerre迭代法的一个注记
6
作者 李春光 刘人丽 《四川师范大学学报(自然科学版)》 CAS CSCD 1991年第2期78-,102,共2页
Laguerre 迭代法具有大范围收敛性,A.M.Ostrowski 著《欧几里得和巴拿赫空间内方程的解法》一书中,用了一个专题对此方法进行了详细的讨论与推广.但其中关于实参数 N=+1时的断言是错误的,本文指出这一错误并给出正确的结论.
关键词 A. M. ostrowski Laguerre迭代法 敛散性
在线阅读 下载PDF
Optimal Eighth Order Convergent Iteration Scheme Based on Lagrange Interpolation
7
作者 Rajni SHARMA Ashu BAHL 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2017年第4期1093-1102,共10页
In this paper, based on fourth order Ostrowski method, we derive an optimal eighth order iteration scheme for obtaining simple roots of nonlinear equations using Lagrange interpolation and suitable weight functions. T... In this paper, based on fourth order Ostrowski method, we derive an optimal eighth order iteration scheme for obtaining simple roots of nonlinear equations using Lagrange interpolation and suitable weight functions. The scheme requires three evaluations of the function and one evaluation of the first derivative per iteration. Numerical examples are included to confirm the theoretical results and to show the competitive performance of the proposed iteration scheme. 展开更多
关键词 nonlinear equations ostrowski method Lagrange interpolation order of convergence efficiencyindex
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部