This paper demonstrates empirical research on using convolutional neural networks(CNN)of deep learning techniques to classify X-rays of COVID-19 patients versus normal patients by feature extraction.Feature extraction...This paper demonstrates empirical research on using convolutional neural networks(CNN)of deep learning techniques to classify X-rays of COVID-19 patients versus normal patients by feature extraction.Feature extraction is one of the most significant phases for classifying medical X-rays radiography that requires inclusive domain knowledge.In this study,CNN architectures such as VGG-16,VGG-19,RestNet50,RestNet18 are compared,and an optimized model for feature extraction in X-ray images from various domains invol-ving several classes is proposed.An X-ray radiography classifier with TensorFlow GPU is created executing CNN architectures and our proposed optimized model for classifying COVID-19(Negative or Positive).Then,2,134 X-rays of normal patients and COVID-19 patients generated by an existing open-source online dataset were labeled to train the optimized models.Among those,the optimized model architecture classifier technique achieves higher accuracy(0.97)than four other models,specifically VGG-16,VGG-19,RestNet18,and RestNet50(0.96,0.72,0.91,and 0.93,respectively).Therefore,this study will enable radiol-ogists to more efficiently and effectively classify a patient’s coronavirus disease.展开更多
Objective:Emerging studies have demonstrated the promising clinical value of circulating tumor cells(CTCs)for diagnosis,disease assessment,treatment monitoring and prognosis in epithelial ovarian cancer.However,the cl...Objective:Emerging studies have demonstrated the promising clinical value of circulating tumor cells(CTCs)for diagnosis,disease assessment,treatment monitoring and prognosis in epithelial ovarian cancer.However,the clinical application of CTC remains restricted due to diverse detection techniques with variable sensitivity and specificity and a lack of common standards.Methods:We enrolled 160 patients with epithelial ovarian cancer as the experimental group,and 90 patients including 50 patients with benign ovarian tumor and 40 healthy females as the control group.We enriched CTCs with immunomagnetic beads targeting two epithelial cell surface antigens(EpCAM and MUC1),and used multiple reverse transcription-polymerase chain reaction(RT-PCR)detecting three markers(EpCAM,MUC1 and WT1)for quantification.And then we used a binary logistic regression analysis and focused on EpCAM,MUC1 and WT1 to establish an optimized CTC detection model.Results:The sensitivity and specificity of the optimized model is 79.4%and 92.2%,respectively.The specificity of the CTC detection model is significantly higher than CA125(92.2%vs.82.2%,P=0.044),and the detection rate of CTCs was higher than the positive rate of CA125(74.5%vs.58.2%,P=0.069)in early-stage patients(stage I and II).The detection rate of CTCs was significantly higher in patients with ascitic volume≥500 mL,suboptimal cytoreductive surgery and elevated serum CA125 level after 2 courses of chemotherapy(P<0.05).The detection rate of CTC;and CTC;was significantly higher in chemo-resistant patients(26.3%vs.11.9%;26.4%vs.13.4%,P<0.05).The median progression-free survival time for CTC;patients trended to be longer than CTC;patients,and overall survival was shorter in CTC;patients(P=0.043).Conclusions:Our study presents an optimized detection model for CTCs,which consists of the expression levels of three markers(EpCAM,MUC1 and WT1).In comparison with CA125,our model has high specificity and demonstrates better diagnostic values,especially for early-stage ovarian cancer.Detection of CTC;and CTC;had predictive value for chemotherapy resistance,and the detection of CTC;suggested poor prognosis.展开更多
Emotions serve various functions.The traditional emotion recognition methods are based primarily on readily accessible facial expressions,gestures,and voice signals.However,it is often challenging to ensure that these...Emotions serve various functions.The traditional emotion recognition methods are based primarily on readily accessible facial expressions,gestures,and voice signals.However,it is often challenging to ensure that these non-physical signals are valid and reliable in practical applications.Electroencephalogram(EEG)signals are more successful than other signal recognition methods in recognizing these characteristics in real-time since they are difficult to camouflage.Although EEG signals are commonly used in current emotional recognition research,the accuracy is low when using traditional methods.Therefore,this study presented an optimized hybrid pattern with an attention mechanism(FFT_CLA)for EEG emotional recognition.First,the EEG signal was processed via the fast fourier transform(FFT),after which the convolutional neural network(CNN),long short-term memory(LSTM),and CNN-LSTM-attention(CLA)methods were used to extract and classify the EEG features.Finally,the experiments compared and analyzed the recognition results obtained via three DEAP dataset models,namely FFT_CNN,FFT_LSTM,and FFT_CLA.The final experimental results indicated that the recognition rates of the FFT_CNN,FFT_LSTM,and FFT_CLA models within the DEAP dataset were 87.39%,88.30%,and 92.38%,respectively.The FFT_CLA model improved the accuracy of EEG emotion recognition and used the attention mechanism to address the often-ignored importance of different channels and samples when extracting EEG features.展开更多
Employing machine learning techniques in predicting the parameters of metamaterial antennas has a significant impact on the reduction of the time needed to design an antenna with optimal parameters using simulation to...Employing machine learning techniques in predicting the parameters of metamaterial antennas has a significant impact on the reduction of the time needed to design an antenna with optimal parameters using simulation tools.In this paper,we propose a new approach for predicting the bandwidth of metamaterial antenna using a novel ensemble model.The proposed ensemble model is composed of two levels of regression models.The first level consists of three strong models namely,random forest,support vector regression,and light gradient boosting machine.Whereas the second level is based on the ElasticNet regression model,which receives the prediction results from the models in the first level for refinement and producing the final optimal result.To achieve the best performance of these regression models,the advanced squirrel search optimization algorithm(ASSOA)is utilized to search for the optimal set of hyper-parameters of each model.Experimental results show that the proposed two-level ensemble model could achieve a robust prediction of the bandwidth of metamaterial antenna when compared with the recently published ensemble models based on the same publicly available benchmark dataset.The findings indicate that the proposed approach results in root mean square error(RMSE)of(0.013),mean absolute error(MAE)of(0.004),and mean bias error(MBE)of(0.0017).These results are superior to the other competing ensemble models and can predict the antenna bandwidth more accurately.展开更多
An optimized nonlinear grey Bernoulli model was proposed by using a particle swarm optimization algorithm to solve the parameter optimization problem. In addition, each item in the first-order accumulated generating s...An optimized nonlinear grey Bernoulli model was proposed by using a particle swarm optimization algorithm to solve the parameter optimization problem. In addition, each item in the first-order accumulated generating sequence was set in turn as an initial condition to determine which alternative would yield the highest forecasting accuracy. To test the forecasting performance, the optimized models with different initial conditions were then used to simulate dissolved oxygen concentrations in the Guantlng reservoir inlet and outlet (China). The empirical results show that the optimized model can remarkably improve forecasting accuracy, and the particle swarm optimization technique is a good tool to solve parameter optimization problems. What's more, the optimized model with an initial condition that performs well in in-sample simulation may not do as well as in out-of-sample forecasting.展开更多
Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item ...Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater抯 economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da抋n in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.展开更多
In Internet of Things (IoT), large amount of data are processed andcommunicated through different network technologies. Wireless Body Area Networks (WBAN) plays pivotal role in the health care domain with an integrati...In Internet of Things (IoT), large amount of data are processed andcommunicated through different network technologies. Wireless Body Area Networks (WBAN) plays pivotal role in the health care domain with an integration ofIoT and Artificial Intelligence (AI). The amalgamation of above mentioned toolshas taken the new peak in terms of diagnosis and treatment process especially inthe pandemic period. But the real challenges such as low latency, energy consumption high throughput still remains in the dark side of the research. This paperproposes a novel optimized cognitive learning based BAN model based on FogIoT technology as a real-time health monitoring systems with the increased network-life time. Energy and latency aware features of BAN have been extractedand used to train the proposed fog based learning algorithm to achieve low energyconsumption and low-latency scheduling algorithm. To test the proposed network,Fog-IoT-BAN test bed has been developed with the battery driven MICOTTboards interfaced with the health care sensors using Micro Python programming.The extensive experimentation is carried out using the above test beds and variousparameters such as accuracy, precision, recall, F1score and specificity has beencalculated along with QoS (quality of service) parameters such as latency, energyand throughput. To prove the superiority of the proposed framework, the performance of the proposed learning based framework has been compared with theother state-of-art classical learning frameworks and other existing Fog-BAN networks such as WORN, DARE, L-No-DEAF networks. Results proves the proposed framework has outperformed the other classical learning models in termsof accuracy and high False Alarm Rate (FAR), energy efficiency and latency.展开更多
The carbon emissions and cost during the construction phase are significant contributors to the oilfield lifecycle.As oilfields enter the late stage,the adaptability of facilities decreases.To achieve sustainable deve...The carbon emissions and cost during the construction phase are significant contributors to the oilfield lifecycle.As oilfields enter the late stage,the adaptability of facilities decreases.To achieve sustainable development,oilfield reconstruction was usually conducted in discrete rather than continuous space.Motivated by economic and sustainability goals,a 3-phase heuristic model for oilfield reconstruction was developed to mine potential locations in continuous space.In phase 1,considering the process characteristics of the oil and gas gathering system,potential locations were mined in continuous space.In phase 2,incorporating comprehensive reconstruction measures,a reconstruction model was established in discrete space.In phase 3,the topology was further adjusted in continuous space.Subsequently,the model was transformed into a single-objective mixed integer linear programming model using the augmented ε-constraint method.Numerical experiments revealed that the small number of potential locations could effectively reduce the reconstruction cost,and the quality of potential locations mined in phase 1 surpassed those generated in random or grid form.Case studies showed that cost and carbon emissions for a new block were reduced by up to 10.45% and 7.21 %,respectively.These reductions were because the potential locations mined in 1P reduced the number of metering stations,and 3P adjusted the locations of metering stations in continuous space to shorten the pipeline length.For an old oilfield,the load and connection ratios of the old metering station increased to 89.7% and 94.9%,respectively,enhancing operation efficiency.Meanwhile,recycling facilitated the diversification of reconstruction measures and yielded a profit of 582,573 ¥,constituting 5.56% of the total cost.This study adopted comprehensive reconstruction measures and tapped into potential reductions in cost and carbon emissions for oilfield reconstruction,offering valuable insights for future oilfield design and construction.展开更多
With the advancement of digital technology,new technologies such as artificial intelligence,big data,and cloud computing have gradually permeated higher education,leading to fundamental changes in teaching and learnin...With the advancement of digital technology,new technologies such as artificial intelligence,big data,and cloud computing have gradually permeated higher education,leading to fundamental changes in teaching and learning methods.Therefore,in the process of reforming and developing higher education,it is essential to take digital technology empowering the optimization of the education industry as a breakthrough,focusing on five key areas:the construction of smart classrooms,the digital integration of teaching resources,the development of personalized learning support systems,the reform of online-offline hybrid teaching,and the intelligentization of educational management.This paper also examines the experiences,challenges,and shortcomings of typical universities in using digital technology to improve teaching quality,optimize resource allocation,and innovate teaching management models.Finally,corresponding countermeasures and suggestions are proposed to facilitate the smooth implementation of digital transformation in higher education institutions.展开更多
According to the principle of minimizing total cost, the three-echelon optimized medical inventory model with stochastic lead-time and two-echelon optimized medicine inventory model with fixed lead-time are establishe...According to the principle of minimizing total cost, the three-echelon optimized medical inventory model with stochastic lead-time and two-echelon optimized medicine inventory model with fixed lead-time are established. The relationship between lead-time and inventory cost is studied by Matlab software. It shows that the variety of lead-time has an important effect on medicine inventory systems. Numerical simulation and sensitivity analysis of two models are presented by Lingo software. Based on analysis, it is concluded that the two-echelon model with lead-time results in inventory cost savings, and keeps the quality of care as reflected in service levels when compared with the three-echelon network structure.展开更多
Electric vehicle is a kind of new energy vehicle which uses batteries as energy supply unit.A huge gap in charging infrastructures will be created by the expansion of electric vehicles.The effectiveness and rationalit...Electric vehicle is a kind of new energy vehicle which uses batteries as energy supply unit.A huge gap in charging infrastructures will be created by the expansion of electric vehicles.The effectiveness and rationality of charging facilities will directly affect the convenience and economy of the users,as well as the safe operation of the power grid.Three types of charging facilities:charging pile,charging station and battery swap station are introduced in this paper.According to the different methods of charging infrastructure planning,the research status of the method of determining charging demand points is expounded.And the spatial distribution of charging demand points extracted by the current site selection method has a certain deviation.Then the models and algorithms of charging infrastructure optimized layout are reviewed.Currently,many researches focus on three categories optimization objectives:benefit of power company side,investment cost of charging facility and user side cost,and the genetic algorithm and particle swarm optimization are the main solving algorithms.Finally,the relative methods and development trend of the charging infrastructures optimized layout are summarized,and some suggestions on the optimized layout of electric vehicle charging infrastructures are given forward.展开更多
Based on the optimization method, a new modified GM (1,1) model is presented, which is characterized by more accuracy prediction for the grey modeling.
An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main f...An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.展开更多
The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models...The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.展开更多
The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of str...The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of structural topology optimization are also discussed.Furthermore,two structural topology optimization models,optimizing a performance index under the limitation of an economic index,represented by the minimum compliance with a volume constraint(MCVC)model,and optimizing an economic index under the limitation of a performance index,represented by the minimum weight with a displacement constraint(MWDC)model,are presented.Based on a comparison of numerical example results,the conclusions can be summarized as follows:(1)under the same external loading and displacement performance conditions,the results of the MWDC model are almost equal to those of the MCVC model;(2)the MWDC model overcomes the difficulties and shortcomings of the MCVC model;this makes the MWDC model more feasible in model construction;(3)constructing a model of minimizing an economic index under the limitations of performance indexes is better at meeting the needs of practical engineering problems and completely satisfies safety and economic requirements in mechanical engineering,which have remained unchanged since the early days of mechanical engineering.展开更多
To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitme...To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.展开更多
To study the uncertain optimization problems on implementation schedule, time-cost trade-off and quality in enterprise resource planning (ERP) implementation, combined with program evaluation and review technique (...To study the uncertain optimization problems on implementation schedule, time-cost trade-off and quality in enterprise resource planning (ERP) implementation, combined with program evaluation and review technique (PERT), some optimization models are proposed, which include the implementation schedule model, the timecost trade-off model, the quality model, and the implementation time-cost-quality synthetic optimization model. A PERT-embedded genetic algorithm (GA) based on stochastic simulation technique is introduced to the optimization models solution. Finally, an example is presented to show that the models and algorithm are reasonable and effective, which can offer a reliable quantitative decision method for ERP implementation.展开更多
This paper focuses on the combustion optimization to cut down NO_x emission with a new strategy.Firstly, orthogonal experimental design(OED) and chaotic sequences are introduced to improve the performance of particle ...This paper focuses on the combustion optimization to cut down NO_x emission with a new strategy.Firstly, orthogonal experimental design(OED) and chaotic sequences are introduced to improve the performance of particle swarm optimization(PSO). Then, a predicting model for NO_x emission is established on support vector machine(SVM) whose parameters are optimized by the improved PSO. Afterwards, a new optimization model considering coal quantity and air quantity along with the traditional optimization variables is established. At last,the operating parameters are optimized by the improved PSO to cut down the NO_x emission. An application on 600 MW unit shows that the new optimization model can cut down NO_x emission effectively and maintain the load balance well. The NO_x emission optimized by the improved PSO is lowest among some state-of-the-art intelligent algorithms. This study can provide important guides for the low NO_x combustion in the power plant.展开更多
An improved multiple car-following model is proposed by considering the arbitrary number of preceding cars, which includes both the headway and the velocity difference of multiple preceding cars. The stability conditi...An improved multiple car-following model is proposed by considering the arbitrary number of preceding cars, which includes both the headway and the velocity difference of multiple preceding cars. The stability condition of the extended model is obtained by using the linear stability theory. The modified Korteweg-de Vries equation is derived to describe the traffic behaviour near the critical point by applying the nonlinear analysis. Traffic flow can be also divided into three regions: stable metastable and unstable regions. Numerical simulation is in accordance with the analytical result for the model. And numerical simulation shows that the stabilisation of traffic is increasing by considering the information of more leading cars and there is unavoidable effect on traffic flow from the multiple leading cars information.展开更多
Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system....Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system. A dynamic optimization model of the supply chain is developed. It has achieved optimal system profit under conditions guaranteeing a certain level of customer satisfaction. Applying this model to coal production of the Xuzhou coal mines allows recommendations for a more systematic use of washing and processing,transportation and sale resources for commercial coal production to be made. The results show that this model,which is scientific and effective,has an important value for making reasonable decisions related to complex coal enterprises.展开更多
文摘This paper demonstrates empirical research on using convolutional neural networks(CNN)of deep learning techniques to classify X-rays of COVID-19 patients versus normal patients by feature extraction.Feature extraction is one of the most significant phases for classifying medical X-rays radiography that requires inclusive domain knowledge.In this study,CNN architectures such as VGG-16,VGG-19,RestNet50,RestNet18 are compared,and an optimized model for feature extraction in X-ray images from various domains invol-ving several classes is proposed.An X-ray radiography classifier with TensorFlow GPU is created executing CNN architectures and our proposed optimized model for classifying COVID-19(Negative or Positive).Then,2,134 X-rays of normal patients and COVID-19 patients generated by an existing open-source online dataset were labeled to train the optimized models.Among those,the optimized model architecture classifier technique achieves higher accuracy(0.97)than four other models,specifically VGG-16,VGG-19,RestNet18,and RestNet50(0.96,0.72,0.91,and 0.93,respectively).Therefore,this study will enable radiol-ogists to more efficiently and effectively classify a patient’s coronavirus disease.
文摘Objective:Emerging studies have demonstrated the promising clinical value of circulating tumor cells(CTCs)for diagnosis,disease assessment,treatment monitoring and prognosis in epithelial ovarian cancer.However,the clinical application of CTC remains restricted due to diverse detection techniques with variable sensitivity and specificity and a lack of common standards.Methods:We enrolled 160 patients with epithelial ovarian cancer as the experimental group,and 90 patients including 50 patients with benign ovarian tumor and 40 healthy females as the control group.We enriched CTCs with immunomagnetic beads targeting two epithelial cell surface antigens(EpCAM and MUC1),and used multiple reverse transcription-polymerase chain reaction(RT-PCR)detecting three markers(EpCAM,MUC1 and WT1)for quantification.And then we used a binary logistic regression analysis and focused on EpCAM,MUC1 and WT1 to establish an optimized CTC detection model.Results:The sensitivity and specificity of the optimized model is 79.4%and 92.2%,respectively.The specificity of the CTC detection model is significantly higher than CA125(92.2%vs.82.2%,P=0.044),and the detection rate of CTCs was higher than the positive rate of CA125(74.5%vs.58.2%,P=0.069)in early-stage patients(stage I and II).The detection rate of CTCs was significantly higher in patients with ascitic volume≥500 mL,suboptimal cytoreductive surgery and elevated serum CA125 level after 2 courses of chemotherapy(P<0.05).The detection rate of CTC;and CTC;was significantly higher in chemo-resistant patients(26.3%vs.11.9%;26.4%vs.13.4%,P<0.05).The median progression-free survival time for CTC;patients trended to be longer than CTC;patients,and overall survival was shorter in CTC;patients(P=0.043).Conclusions:Our study presents an optimized detection model for CTCs,which consists of the expression levels of three markers(EpCAM,MUC1 and WT1).In comparison with CA125,our model has high specificity and demonstrates better diagnostic values,especially for early-stage ovarian cancer.Detection of CTC;and CTC;had predictive value for chemotherapy resistance,and the detection of CTC;suggested poor prognosis.
基金This work was supported by the National Nature Science Foundation of China(No.61503423,H.P.Jiang).The URL is http://www.nsfc.gov.cn/.
文摘Emotions serve various functions.The traditional emotion recognition methods are based primarily on readily accessible facial expressions,gestures,and voice signals.However,it is often challenging to ensure that these non-physical signals are valid and reliable in practical applications.Electroencephalogram(EEG)signals are more successful than other signal recognition methods in recognizing these characteristics in real-time since they are difficult to camouflage.Although EEG signals are commonly used in current emotional recognition research,the accuracy is low when using traditional methods.Therefore,this study presented an optimized hybrid pattern with an attention mechanism(FFT_CLA)for EEG emotional recognition.First,the EEG signal was processed via the fast fourier transform(FFT),after which the convolutional neural network(CNN),long short-term memory(LSTM),and CNN-LSTM-attention(CLA)methods were used to extract and classify the EEG features.Finally,the experiments compared and analyzed the recognition results obtained via three DEAP dataset models,namely FFT_CNN,FFT_LSTM,and FFT_CLA.The final experimental results indicated that the recognition rates of the FFT_CNN,FFT_LSTM,and FFT_CLA models within the DEAP dataset were 87.39%,88.30%,and 92.38%,respectively.The FFT_CLA model improved the accuracy of EEG emotion recognition and used the attention mechanism to address the often-ignored importance of different channels and samples when extracting EEG features.
基金The authors received funding for this study from the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFP2021-033).
文摘Employing machine learning techniques in predicting the parameters of metamaterial antennas has a significant impact on the reduction of the time needed to design an antenna with optimal parameters using simulation tools.In this paper,we propose a new approach for predicting the bandwidth of metamaterial antenna using a novel ensemble model.The proposed ensemble model is composed of two levels of regression models.The first level consists of three strong models namely,random forest,support vector regression,and light gradient boosting machine.Whereas the second level is based on the ElasticNet regression model,which receives the prediction results from the models in the first level for refinement and producing the final optimal result.To achieve the best performance of these regression models,the advanced squirrel search optimization algorithm(ASSOA)is utilized to search for the optimal set of hyper-parameters of each model.Experimental results show that the proposed two-level ensemble model could achieve a robust prediction of the bandwidth of metamaterial antenna when compared with the recently published ensemble models based on the same publicly available benchmark dataset.The findings indicate that the proposed approach results in root mean square error(RMSE)of(0.013),mean absolute error(MAE)of(0.004),and mean bias error(MBE)of(0.0017).These results are superior to the other competing ensemble models and can predict the antenna bandwidth more accurately.
基金supported by the National Natural Science Foundation of China (Nos. 51178018 and 71031001)
文摘An optimized nonlinear grey Bernoulli model was proposed by using a particle swarm optimization algorithm to solve the parameter optimization problem. In addition, each item in the first-order accumulated generating sequence was set in turn as an initial condition to determine which alternative would yield the highest forecasting accuracy. To test the forecasting performance, the optimized models with different initial conditions were then used to simulate dissolved oxygen concentrations in the Guantlng reservoir inlet and outlet (China). The empirical results show that the optimized model can remarkably improve forecasting accuracy, and the particle swarm optimization technique is a good tool to solve parameter optimization problems. What's more, the optimized model with an initial condition that performs well in in-sample simulation may not do as well as in out-of-sample forecasting.
基金The Key Project of the National Ninth-Five-Year Plan No. 96-004-02-09The 48Project of Ministry of Water Resources No. 985106The Project of Chinese Academy of Sciences
文摘Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater抯 economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da抋n in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.
文摘In Internet of Things (IoT), large amount of data are processed andcommunicated through different network technologies. Wireless Body Area Networks (WBAN) plays pivotal role in the health care domain with an integration ofIoT and Artificial Intelligence (AI). The amalgamation of above mentioned toolshas taken the new peak in terms of diagnosis and treatment process especially inthe pandemic period. But the real challenges such as low latency, energy consumption high throughput still remains in the dark side of the research. This paperproposes a novel optimized cognitive learning based BAN model based on FogIoT technology as a real-time health monitoring systems with the increased network-life time. Energy and latency aware features of BAN have been extractedand used to train the proposed fog based learning algorithm to achieve low energyconsumption and low-latency scheduling algorithm. To test the proposed network,Fog-IoT-BAN test bed has been developed with the battery driven MICOTTboards interfaced with the health care sensors using Micro Python programming.The extensive experimentation is carried out using the above test beds and variousparameters such as accuracy, precision, recall, F1score and specificity has beencalculated along with QoS (quality of service) parameters such as latency, energyand throughput. To prove the superiority of the proposed framework, the performance of the proposed learning based framework has been compared with theother state-of-art classical learning frameworks and other existing Fog-BAN networks such as WORN, DARE, L-No-DEAF networks. Results proves the proposed framework has outperformed the other classical learning models in termsof accuracy and high False Alarm Rate (FAR), energy efficiency and latency.
基金supported by the National Natural Science Foundation of China (Grant No.52174065)the National Natural Science Foundation of China (Grant No.52304071)+1 种基金China University of Petroleum,Beijing (Grant No.ZX20220040)MOE Key Laboratory of Petroleum Engineering (China University of Petroleum,No.2462024PTJS002)。
文摘The carbon emissions and cost during the construction phase are significant contributors to the oilfield lifecycle.As oilfields enter the late stage,the adaptability of facilities decreases.To achieve sustainable development,oilfield reconstruction was usually conducted in discrete rather than continuous space.Motivated by economic and sustainability goals,a 3-phase heuristic model for oilfield reconstruction was developed to mine potential locations in continuous space.In phase 1,considering the process characteristics of the oil and gas gathering system,potential locations were mined in continuous space.In phase 2,incorporating comprehensive reconstruction measures,a reconstruction model was established in discrete space.In phase 3,the topology was further adjusted in continuous space.Subsequently,the model was transformed into a single-objective mixed integer linear programming model using the augmented ε-constraint method.Numerical experiments revealed that the small number of potential locations could effectively reduce the reconstruction cost,and the quality of potential locations mined in phase 1 surpassed those generated in random or grid form.Case studies showed that cost and carbon emissions for a new block were reduced by up to 10.45% and 7.21 %,respectively.These reductions were because the potential locations mined in 1P reduced the number of metering stations,and 3P adjusted the locations of metering stations in continuous space to shorten the pipeline length.For an old oilfield,the load and connection ratios of the old metering station increased to 89.7% and 94.9%,respectively,enhancing operation efficiency.Meanwhile,recycling facilitated the diversification of reconstruction measures and yielded a profit of 582,573 ¥,constituting 5.56% of the total cost.This study adopted comprehensive reconstruction measures and tapped into potential reductions in cost and carbon emissions for oilfield reconstruction,offering valuable insights for future oilfield design and construction.
文摘With the advancement of digital technology,new technologies such as artificial intelligence,big data,and cloud computing have gradually permeated higher education,leading to fundamental changes in teaching and learning methods.Therefore,in the process of reforming and developing higher education,it is essential to take digital technology empowering the optimization of the education industry as a breakthrough,focusing on five key areas:the construction of smart classrooms,the digital integration of teaching resources,the development of personalized learning support systems,the reform of online-offline hybrid teaching,and the intelligentization of educational management.This paper also examines the experiences,challenges,and shortcomings of typical universities in using digital technology to improve teaching quality,optimize resource allocation,and innovate teaching management models.Finally,corresponding countermeasures and suggestions are proposed to facilitate the smooth implementation of digital transformation in higher education institutions.
文摘According to the principle of minimizing total cost, the three-echelon optimized medical inventory model with stochastic lead-time and two-echelon optimized medicine inventory model with fixed lead-time are established. The relationship between lead-time and inventory cost is studied by Matlab software. It shows that the variety of lead-time has an important effect on medicine inventory systems. Numerical simulation and sensitivity analysis of two models are presented by Lingo software. Based on analysis, it is concluded that the two-echelon model with lead-time results in inventory cost savings, and keeps the quality of care as reflected in service levels when compared with the three-echelon network structure.
基金Project(21805217)supported by the National Natural Science Foundation of ChinaProject(2015BAG08B02)supported by the National Key Technologies Research and Development Program of ChinaProject(2019IVB014)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Electric vehicle is a kind of new energy vehicle which uses batteries as energy supply unit.A huge gap in charging infrastructures will be created by the expansion of electric vehicles.The effectiveness and rationality of charging facilities will directly affect the convenience and economy of the users,as well as the safe operation of the power grid.Three types of charging facilities:charging pile,charging station and battery swap station are introduced in this paper.According to the different methods of charging infrastructure planning,the research status of the method of determining charging demand points is expounded.And the spatial distribution of charging demand points extracted by the current site selection method has a certain deviation.Then the models and algorithms of charging infrastructure optimized layout are reviewed.Currently,many researches focus on three categories optimization objectives:benefit of power company side,investment cost of charging facility and user side cost,and the genetic algorithm and particle swarm optimization are the main solving algorithms.Finally,the relative methods and development trend of the charging infrastructures optimized layout are summarized,and some suggestions on the optimized layout of electric vehicle charging infrastructures are given forward.
文摘Based on the optimization method, a new modified GM (1,1) model is presented, which is characterized by more accuracy prediction for the grey modeling.
基金Project(2007CB209402) supported by the National Basic Research Program of China Project(SKLGDUEK0906) supported by the Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering of China
文摘An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.
基金ItemSponsored by National Natural Science Foundation of China (50104004)
文摘The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.
基金supported by the National Natural Science Foundation of China(Grant 11172013)
文摘The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of structural topology optimization are also discussed.Furthermore,two structural topology optimization models,optimizing a performance index under the limitation of an economic index,represented by the minimum compliance with a volume constraint(MCVC)model,and optimizing an economic index under the limitation of a performance index,represented by the minimum weight with a displacement constraint(MWDC)model,are presented.Based on a comparison of numerical example results,the conclusions can be summarized as follows:(1)under the same external loading and displacement performance conditions,the results of the MWDC model are almost equal to those of the MCVC model;(2)the MWDC model overcomes the difficulties and shortcomings of the MCVC model;this makes the MWDC model more feasible in model construction;(3)constructing a model of minimizing an economic index under the limitations of performance indexes is better at meeting the needs of practical engineering problems and completely satisfies safety and economic requirements in mechanical engineering,which have remained unchanged since the early days of mechanical engineering.
基金supported by the Special Research Project on Power Planning of the Guangdong Power Grid Co.,Ltd.
文摘To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.
基金the National High-Tech. R & D Program for CIMS, China (2003AA413210).
文摘To study the uncertain optimization problems on implementation schedule, time-cost trade-off and quality in enterprise resource planning (ERP) implementation, combined with program evaluation and review technique (PERT), some optimization models are proposed, which include the implementation schedule model, the timecost trade-off model, the quality model, and the implementation time-cost-quality synthetic optimization model. A PERT-embedded genetic algorithm (GA) based on stochastic simulation technique is introduced to the optimization models solution. Finally, an example is presented to show that the models and algorithm are reasonable and effective, which can offer a reliable quantitative decision method for ERP implementation.
基金the National Natural Science Foundation of China(No.51406077)the Natural Science Foundation of Jiangsu Province(No.12KJB470008)
文摘This paper focuses on the combustion optimization to cut down NO_x emission with a new strategy.Firstly, orthogonal experimental design(OED) and chaotic sequences are introduced to improve the performance of particle swarm optimization(PSO). Then, a predicting model for NO_x emission is established on support vector machine(SVM) whose parameters are optimized by the improved PSO. Afterwards, a new optimization model considering coal quantity and air quantity along with the traditional optimization variables is established. At last,the operating parameters are optimized by the improved PSO to cut down the NO_x emission. An application on 600 MW unit shows that the new optimization model can cut down NO_x emission effectively and maintain the load balance well. The NO_x emission optimized by the improved PSO is lowest among some state-of-the-art intelligent algorithms. This study can provide important guides for the low NO_x combustion in the power plant.
基金Project supported by the Natural Science Foundation of Hunan Province,China (Grant No. 07JJ6106)the Important Project of Scientific Research Foundation of Hunan University of Arts and Science,China (Grant No. JJZD0902)the Fund of the 11th Five-year Plan for Key Construction Academic Subject of Hunan Province,China (Grant No. 06GXCD02)
文摘An improved multiple car-following model is proposed by considering the arbitrary number of preceding cars, which includes both the headway and the velocity difference of multiple preceding cars. The stability condition of the extended model is obtained by using the linear stability theory. The modified Korteweg-de Vries equation is derived to describe the traffic behaviour near the critical point by applying the nonlinear analysis. Traffic flow can be also divided into three regions: stable metastable and unstable regions. Numerical simulation is in accordance with the analytical result for the model. And numerical simulation shows that the stabilisation of traffic is increasing by considering the information of more leading cars and there is unavoidable effect on traffic flow from the multiple leading cars information.
文摘Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system. A dynamic optimization model of the supply chain is developed. It has achieved optimal system profit under conditions guaranteeing a certain level of customer satisfaction. Applying this model to coal production of the Xuzhou coal mines allows recommendations for a more systematic use of washing and processing,transportation and sale resources for commercial coal production to be made. The results show that this model,which is scientific and effective,has an important value for making reasonable decisions related to complex coal enterprises.