Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly effi...Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly efficient calculations for O-CNOPs are still challenging in the field of ensemble forecasting.In this study,we combine a gradient-based iterative idea with the Gram‒Schmidt orthogonalization,and propose an iterative optimization method to compute O-CNOPs.This method is different from the original sequential optimization method,and allows parallel computations of O-CNOPs,thus saving a large amount of computational time.We evaluate this method by using the Lorenz-96 model on the basis of the ensemble forecasting ability achieved and on the time consumed for computing O-CNOPs.The results demonstrate that the parallel iterative method causes O-CNOPs to yield reliable ensemble members and to achieve ensemble forecasting skills similar to or even slightly higher than those produced by the sequential method.Moreover,the parallel method significantly reduces the computational time for O-CNOPs.Therefore,the parallel iterative method provides a highly effective and efficient approach for calculating O-CNOPs for ensemble forecasts.Expectedly,it can play an important role in the application of the O-CNOPs to realistic ensemble forecasts for high-impact weather and climate events.展开更多
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ...In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.展开更多
Volcanic terrains exhibit a complex structure of pyroclastic deposits interspersed with sedimentary processes,resulting in irregular lithological sequences that lack lateral continuity and distinct stratigraphic patte...Volcanic terrains exhibit a complex structure of pyroclastic deposits interspersed with sedimentary processes,resulting in irregular lithological sequences that lack lateral continuity and distinct stratigraphic patterns.This complexity poses significant challenges for slope stability analysis,requiring the development of specialized techniques to address these issues.This research presents a numerical methodology that incorporates spatial variability,nonlinear material characterization,and probabilistic analysis using a Monte Carlo framework to address this issue.The heterogeneous structure is represented by randomly assigning different lithotypes across the slope,while maintaining predefined global proportions.This contrasts with the more common approach of applying probabilistic variability to mechanical parameters within a homogeneous slope model.The material behavior is defined using complex nonlinear failure criteria,such as the Hoek-Brown model and a parabolic model with collapse,both implemented through linearization techniques.The Discontinuity Layout Optimization(DLO)method,a novel numerical approach based on limit analysis,is employed to efficiently incorporate these advances and compute the factor of safety of the slope.Within this framework,the Monte Carlo procedure is used to assess slope stability by conducting a large number of simulations,each with a different lithotype distribution.Based on the results,a hybrid method is proposed that combines probabilistic modeling with deterministic design principles for the slope stability assessment.As a case study,the methodology is applied to a 20-m-high vertical slope composed of three lithotypes(altered scoria,welded scoria,and basalt)randomly distributed in proportions of 15%,60%,and 25%,respectively.The results show convergence of mean values after approximately 400 simulations and highlight the significant influence of spatial heterogeneity,with variations of the factor of safety between 5 and 12 in 85%of cases.They also reveal non-circular and mid-slope failure wedges not captured by traditional stability methods.Finally,an equivalent normal probability distribution is proposed as a reliable approximation of the factor of safety for use in risk analysis and engineering decision-making.展开更多
This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are glob...This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are globally convergent for general convex functions.展开更多
The alternative working modes and flexible working states are the outstanding features of an adaptive cycle engine, with a proper control schedule design being the only way to exploit the performance of such an engine...The alternative working modes and flexible working states are the outstanding features of an adaptive cycle engine, with a proper control schedule design being the only way to exploit the performance of such an engine. However, unreasonable design in the control schedule causes not only performance deterioration but also serious aerodynamic stability problems. Thus, in this work,a hybrid optimization method that automatically chooses the working modes and identifies the optimal and smooth control schedules is proposed, by combining the differential evolution algorithm and the Latin hypercube sampling method. The control schedule architecture does not only optimize the engine steady-state performance under different working modes but also solves the control-schedule discontinuity problem, especially during mode transition. The optimal control schedules are continuous and almost monotonic, and hence are strongly suitable for a control system, and are designed for two different working conditions, i.e., supersonic and subsonic throttling,which proves that the proposed hybrid method applies to various working conditions. The evaluation demonstrates that the proposed control method optimizes the engine performance, the surge margin of the compression components, and the range of the thrust during throttling.展开更多
This paper presents a novel experimental design to greatly improve the calibration accuracy of the acceleration-insensitive bias and the acceleration-sensitive bias of the dynamically tuned gyroscopes(DTGs).In order...This paper presents a novel experimental design to greatly improve the calibration accuracy of the acceleration-insensitive bias and the acceleration-sensitive bias of the dynamically tuned gyroscopes(DTGs).In order to reduce experimental cost,the D-optimal criteria with constraints are constructed.The turntable positions and the number of test points are chosen to build D-optimal experimental designs.The D-optimal experimental designs are tested by multi-position calibration experiment for tactical-grade DTGs.Test results show that,with the same cost,the fit uncertainty is reduced by about 50% by using the D-optimal 8-position experimental procedure,compared to using a defacto standard experimental procedure in ANSI/IEEE Std 813-1988.Furthermore,the new experimental procedure almost achieves optimal accuracy with only 12-position which is half the cost of the widely adopted 24-position experimental procedure for achieving optimal accuracy.展开更多
A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of ...A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.展开更多
The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results.This situation occurs when the test modal model is incomplete,as is often the case in practi...The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results.This situation occurs when the test modal model is incomplete,as is often the case in practice.An improved optimal elemental method is presented that defines a new objective function,and as a byproduct,circumvents the need for mass normalized modal shapes,which are also not readily available in practice.To solve the group of nonlinear equations created by the improved optimal method,the Lagrange multiplier method and Matlab function fmincon are employed.To deal with actual complex structures, the float-encoding genetic algorithm(FGA)is introduced to enhance the capability of the improved method.Two examples,a 7- degree of freedom(DOF)mass-spring system and a 53-DOF planar frame,respectively,are updated using the improved method. The example results demonstrate the advantages of the improved method over existing optimal methods,and show that the genetic algorithm is an effective way to update the models used for actual complex structures.展开更多
A method for the optimal fiber input power determination is presented by employing the variation characteristics of signal to noise ratio(SNR) in spontaneous Brillouin-scattering-based sensing system. And a heterodyne...A method for the optimal fiber input power determination is presented by employing the variation characteristics of signal to noise ratio(SNR) in spontaneous Brillouin-scattering-based sensing system. And a heterodyne detection system is constructed for measuring the Brillouin scattering spectra with different fiber input powers. The Brillouin spectrum width and system SNR can be simultaneously measured from these spectra, and the optimal fiber input power can be obtained from such information. In the experiment, for 48.8-km-long standard single-mode fiber(SSMF), the optimal fiber input power values are all approximately 0 dBm obtained by the maximum SNR position for different local oscillator power values and average times.展开更多
Based on the zero-failure data of 30 Chinese 1. 5 MW wind turbine gearboxes( WTGs),the optimal confidence limit method was developed to predict the reliability and reliability lifetime of WTG. Firstly,Bayesian method ...Based on the zero-failure data of 30 Chinese 1. 5 MW wind turbine gearboxes( WTGs),the optimal confidence limit method was developed to predict the reliability and reliability lifetime of WTG. Firstly,Bayesian method and classical probability estimation method were introduced to estimate the value interval of shape parameter considering the engineering practice. Secondly,taking this value interval into the optimal confidence limit method,the reliability and reliability lifetime of WTG could be obtained under different confidence levels. Finally,the results of optimal confidence limit method and Bayesian method were compared. And the comparison results show that the rationality of this estimated range.Meantime, the rule of confidence level selection in the optimal confidence limit method is provided, and the reliability and reliability lifetime prediction of WTG can be acquired.展开更多
This paper presents the optimal method of experiment for multidimensional dynamic programming.It becomes possible to solve the general problems of thousanddimensions.
Underground space resources are important for the purposes of urban sustainable development and are a significant means by which to realize three-dimensional urban development.A reasonable and scientific evaluation of...Underground space resources are important for the purposes of urban sustainable development and are a significant means by which to realize three-dimensional urban development.A reasonable and scientific evaluation of underground space resources is the foundation for the rational use of land resources and urban planning.On the basis of the geological conditions used by preceding researchers,this study adds the analysis of two influencing factors of social and economic value,alongside existing facilities and protection needs.The evaluation index is quantified and the comprehensive quality evaluation system of underground space resources is constructed.Finally,taking the Nanshan District of Shenzhen as an example,the evaluation of underground space resources is carried out.The results show that for shallow underground space,the comprehensive quality of underground space resources development in Nanshan District is generally high.Nantou,Nanshan and Yuehai streets are recommended as areas to actively develop underground space,whereas the Qianhai and Houhai areas are recommended to be used with caution in the development and construction of their underground space.In addition,this study also provides a reference for the purposes of underground space planning in the Nanshan district of Shenzhen.展开更多
Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock ma...Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.展开更多
To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection techniq...To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).展开更多
This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and tra...This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and trajectory guidance for vehicles entering the gap is determined under safety constraints.Based on the initial state and sequence of vehicles entering the merging area,individual vehicle trajectories are optimized sequentially.An optimization model and method for ramp entry trajectories in mixed traffic flow are developed,incorporating on-ramp vehicle entry sequencing and ordinary vehicle trajectory prediction.Key performance indicators,including driving safety,total travel time,parking wait probability,and trajectory smoothness,are compared and analyzed to evaluate the proposed approach.展开更多
Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. ...Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust.展开更多
The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And...The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And capabilities of flight and propulsion systems are considered also. Combined with digital terrain map technique, the direct method is applied to the three dimensional trajectory optimization for low altitude penetration, and simplex algorithm is used to solve the parameters in optimization. For the small number of parameters, the trajectory can be optimized in real time on board.展开更多
Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary a...Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary algorithms (EAs) and the Pareto front concept are used to solve practical design problems in industry for its robustness in capturing convex, concave, discrete or discontinuous Pareto fronts of multi-objective optimization problems. However, the process is time-consuming. Therefore, deterministic optimization methods are introduced to capture the Pareto front, and the types of the captured Pareto front are explained. Numerical experiments show that the deterministic optimization method is a good alternative to EAs for capturing any convex and some concave Pareto fronts in multi-criterion aerodynamic optimization problems due to its efficiency.展开更多
Response analysis of structures involving non-probabilistic uncertain parameters can be closely related to optimization.This paper provides a review on optimization-based methods for uncertainty analysis,with focusing...Response analysis of structures involving non-probabilistic uncertain parameters can be closely related to optimization.This paper provides a review on optimization-based methods for uncertainty analysis,with focusing attention on specific properties of adopted numerical optimization approaches.We collect and discuss the methods based on nonlinear programming,semidefinite programming,mixed-integer programming,mathematical programming with complementarity constraints,difference-of-convex programming,optimization methods using surrogate models and machine learning techniques,and metaheuristics.As a closely related topic,we also overview the methods for assessing structural robustness using non-probabilistic uncertainty modeling.We conclude the paper by drawing several remarks through this review.展开更多
The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often...The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities.展开更多
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41930971,42330111,and 42405061)the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(Earth Lab).
文摘Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly efficient calculations for O-CNOPs are still challenging in the field of ensemble forecasting.In this study,we combine a gradient-based iterative idea with the Gram‒Schmidt orthogonalization,and propose an iterative optimization method to compute O-CNOPs.This method is different from the original sequential optimization method,and allows parallel computations of O-CNOPs,thus saving a large amount of computational time.We evaluate this method by using the Lorenz-96 model on the basis of the ensemble forecasting ability achieved and on the time consumed for computing O-CNOPs.The results demonstrate that the parallel iterative method causes O-CNOPs to yield reliable ensemble members and to achieve ensemble forecasting skills similar to or even slightly higher than those produced by the sequential method.Moreover,the parallel method significantly reduces the computational time for O-CNOPs.Therefore,the parallel iterative method provides a highly effective and efficient approach for calculating O-CNOPs for ensemble forecasts.Expectedly,it can play an important role in the application of the O-CNOPs to realistic ensemble forecasts for high-impact weather and climate events.
基金Supported by the Beijing Municipal Science&Technology Commission(Z211100004421012),the Key Reaserch and Development Pro⁃gram of China(2022YFF0605902)。
文摘In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.
基金the project PID2022-139202OB-I00Neural Networks and Optimization Techniques for the Design and Safe Maintenance of Transportation Infrastructures:Volcanic Rock Geotechnics and Slope Stability(IA-Pyroslope),funded by the Spanish State Research Agency of the Ministry of Science,Innovation and Universities of Spain and the European Regional Development Fund,MCIN/AEI/10.13039/501100011033/FEDER,EU。
文摘Volcanic terrains exhibit a complex structure of pyroclastic deposits interspersed with sedimentary processes,resulting in irregular lithological sequences that lack lateral continuity and distinct stratigraphic patterns.This complexity poses significant challenges for slope stability analysis,requiring the development of specialized techniques to address these issues.This research presents a numerical methodology that incorporates spatial variability,nonlinear material characterization,and probabilistic analysis using a Monte Carlo framework to address this issue.The heterogeneous structure is represented by randomly assigning different lithotypes across the slope,while maintaining predefined global proportions.This contrasts with the more common approach of applying probabilistic variability to mechanical parameters within a homogeneous slope model.The material behavior is defined using complex nonlinear failure criteria,such as the Hoek-Brown model and a parabolic model with collapse,both implemented through linearization techniques.The Discontinuity Layout Optimization(DLO)method,a novel numerical approach based on limit analysis,is employed to efficiently incorporate these advances and compute the factor of safety of the slope.Within this framework,the Monte Carlo procedure is used to assess slope stability by conducting a large number of simulations,each with a different lithotype distribution.Based on the results,a hybrid method is proposed that combines probabilistic modeling with deterministic design principles for the slope stability assessment.As a case study,the methodology is applied to a 20-m-high vertical slope composed of three lithotypes(altered scoria,welded scoria,and basalt)randomly distributed in proportions of 15%,60%,and 25%,respectively.The results show convergence of mean values after approximately 400 simulations and highlight the significant influence of spatial heterogeneity,with variations of the factor of safety between 5 and 12 in 85%of cases.They also reveal non-circular and mid-slope failure wedges not captured by traditional stability methods.Finally,an equivalent normal probability distribution is proposed as a reliable approximation of the factor of safety for use in risk analysis and engineering decision-making.
文摘This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are globally convergent for general convex functions.
基金funded by National Nature Science Foundation of China(Nos.51776010 and 91860205)supported by the Academic Excellence Foundation of BUAA for PhD Students,China。
文摘The alternative working modes and flexible working states are the outstanding features of an adaptive cycle engine, with a proper control schedule design being the only way to exploit the performance of such an engine. However, unreasonable design in the control schedule causes not only performance deterioration but also serious aerodynamic stability problems. Thus, in this work,a hybrid optimization method that automatically chooses the working modes and identifies the optimal and smooth control schedules is proposed, by combining the differential evolution algorithm and the Latin hypercube sampling method. The control schedule architecture does not only optimize the engine steady-state performance under different working modes but also solves the control-schedule discontinuity problem, especially during mode transition. The optimal control schedules are continuous and almost monotonic, and hence are strongly suitable for a control system, and are designed for two different working conditions, i.e., supersonic and subsonic throttling,which proves that the proposed hybrid method applies to various working conditions. The evaluation demonstrates that the proposed control method optimizes the engine performance, the surge margin of the compression components, and the range of the thrust during throttling.
基金National Natural Science Foundation of China (61071014)National Basic Research Program of China(2009CB72400201)
文摘This paper presents a novel experimental design to greatly improve the calibration accuracy of the acceleration-insensitive bias and the acceleration-sensitive bias of the dynamically tuned gyroscopes(DTGs).In order to reduce experimental cost,the D-optimal criteria with constraints are constructed.The turntable positions and the number of test points are chosen to build D-optimal experimental designs.The D-optimal experimental designs are tested by multi-position calibration experiment for tactical-grade DTGs.Test results show that,with the same cost,the fit uncertainty is reduced by about 50% by using the D-optimal 8-position experimental procedure,compared to using a defacto standard experimental procedure in ANSI/IEEE Std 813-1988.Furthermore,the new experimental procedure almost achieves optimal accuracy with only 12-position which is half the cost of the widely adopted 24-position experimental procedure for achieving optimal accuracy.
基金Supported by the Project of Ministry of Education and Finance(No.200512)the Project of the State Key Laboratory of ocean engineering(GKZD010053-10)
文摘A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.
基金The China Hi-Tech R&D Program(863 Program) Project Number 2001AA602023
文摘The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results.This situation occurs when the test modal model is incomplete,as is often the case in practice.An improved optimal elemental method is presented that defines a new objective function,and as a byproduct,circumvents the need for mass normalized modal shapes,which are also not readily available in practice.To solve the group of nonlinear equations created by the improved optimal method,the Lagrange multiplier method and Matlab function fmincon are employed.To deal with actual complex structures, the float-encoding genetic algorithm(FGA)is introduced to enhance the capability of the improved method.Two examples,a 7- degree of freedom(DOF)mass-spring system and a 53-DOF planar frame,respectively,are updated using the improved method. The example results demonstrate the advantages of the improved method over existing optimal methods,and show that the genetic algorithm is an effective way to update the models used for actual complex structures.
基金supported by the National Natural Science Foundation of China(No.61377088)the Natural Science Foundation of Hebei Province of China(Nos.E2015502053 and F2014502098)
文摘A method for the optimal fiber input power determination is presented by employing the variation characteristics of signal to noise ratio(SNR) in spontaneous Brillouin-scattering-based sensing system. And a heterodyne detection system is constructed for measuring the Brillouin scattering spectra with different fiber input powers. The Brillouin spectrum width and system SNR can be simultaneously measured from these spectra, and the optimal fiber input power can be obtained from such information. In the experiment, for 48.8-km-long standard single-mode fiber(SSMF), the optimal fiber input power values are all approximately 0 dBm obtained by the maximum SNR position for different local oscillator power values and average times.
基金National Natural Science Foundation of China(No.51265025)
文摘Based on the zero-failure data of 30 Chinese 1. 5 MW wind turbine gearboxes( WTGs),the optimal confidence limit method was developed to predict the reliability and reliability lifetime of WTG. Firstly,Bayesian method and classical probability estimation method were introduced to estimate the value interval of shape parameter considering the engineering practice. Secondly,taking this value interval into the optimal confidence limit method,the reliability and reliability lifetime of WTG could be obtained under different confidence levels. Finally,the results of optimal confidence limit method and Bayesian method were compared. And the comparison results show that the rationality of this estimated range.Meantime, the rule of confidence level selection in the optimal confidence limit method is provided, and the reliability and reliability lifetime prediction of WTG can be acquired.
文摘This paper presents the optimal method of experiment for multidimensional dynamic programming.It becomes possible to solve the general problems of thousanddimensions.
基金The project of the Chinese Geological Survey'Survey of geothermal resources in the northern branch of Luoxiao Mountains'(Grant No.DD20221677-2)the special funds for basic scientific research business'Research on dome structure and circulation mechanism of annular hot spring chain'(Grant No.JKY202004)funded this research project。
文摘Underground space resources are important for the purposes of urban sustainable development and are a significant means by which to realize three-dimensional urban development.A reasonable and scientific evaluation of underground space resources is the foundation for the rational use of land resources and urban planning.On the basis of the geological conditions used by preceding researchers,this study adds the analysis of two influencing factors of social and economic value,alongside existing facilities and protection needs.The evaluation index is quantified and the comprehensive quality evaluation system of underground space resources is constructed.Finally,taking the Nanshan District of Shenzhen as an example,the evaluation of underground space resources is carried out.The results show that for shallow underground space,the comprehensive quality of underground space resources development in Nanshan District is generally high.Nantou,Nanshan and Yuehai streets are recommended as areas to actively develop underground space,whereas the Qianhai and Houhai areas are recommended to be used with caution in the development and construction of their underground space.In addition,this study also provides a reference for the purposes of underground space planning in the Nanshan district of Shenzhen.
基金funded by the National Natural Science Foundation of China(52074298)Beijing Municipal Natural Science Foundation(8232056)+1 种基金Guizhou Province science and technology plan project([2020]3008)Liulin Energy and Environment Academician Workstation(2022XDHZ12).
文摘Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.
基金supported by the the National Science and Technology Council(Grant Number:NSTC 112-2221-E239-022).
文摘To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).
文摘This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and trajectory guidance for vehicles entering the gap is determined under safety constraints.Based on the initial state and sequence of vehicles entering the merging area,individual vehicle trajectories are optimized sequentially.An optimization model and method for ramp entry trajectories in mixed traffic flow are developed,incorporating on-ramp vehicle entry sequencing and ordinary vehicle trajectory prediction.Key performance indicators,including driving safety,total travel time,parking wait probability,and trajectory smoothness,are compared and analyzed to evaluate the proposed approach.
基金supported by the National Natural Science Foundation of China (Grant Nos.40334040 and 40974033)the Promoting Foundation for Advanced Persons of Talent of NCWU
文摘Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust.
文摘The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And capabilities of flight and propulsion systems are considered also. Combined with digital terrain map technique, the direct method is applied to the three dimensional trajectory optimization for low altitude penetration, and simplex algorithm is used to solve the parameters in optimization. For the small number of parameters, the trajectory can be optimized in real time on board.
文摘Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary algorithms (EAs) and the Pareto front concept are used to solve practical design problems in industry for its robustness in capturing convex, concave, discrete or discontinuous Pareto fronts of multi-objective optimization problems. However, the process is time-consuming. Therefore, deterministic optimization methods are introduced to capture the Pareto front, and the types of the captured Pareto front are explained. Numerical experiments show that the deterministic optimization method is a good alternative to EAs for capturing any convex and some concave Pareto fronts in multi-criterion aerodynamic optimization problems due to its efficiency.
文摘Response analysis of structures involving non-probabilistic uncertain parameters can be closely related to optimization.This paper provides a review on optimization-based methods for uncertainty analysis,with focusing attention on specific properties of adopted numerical optimization approaches.We collect and discuss the methods based on nonlinear programming,semidefinite programming,mixed-integer programming,mathematical programming with complementarity constraints,difference-of-convex programming,optimization methods using surrogate models and machine learning techniques,and metaheuristics.As a closely related topic,we also overview the methods for assessing structural robustness using non-probabilistic uncertainty modeling.We conclude the paper by drawing several remarks through this review.
基金The researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025)。
文摘The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities.