To meet the requirement of the real-time, accuracy and multi-target diagnosis of the large radar system,a new fuzzy fault diagnosis method based on directed graph model is proposed in this paper. In this method, the l...To meet the requirement of the real-time, accuracy and multi-target diagnosis of the large radar system,a new fuzzy fault diagnosis method based on directed graph model is proposed in this paper. In this method, the large complex system model is defined using the directed graph model firstly, in which the nodes observing the fault by the hierarchical reconstruction of the directed graph are located, then the fault dependency matrix between these nodes and the fault sources are established. And then, we utilize the sensors' alarm probabilities under different situations to build the characteristic fault observation matrix in the fault observation space. Finally,the optimized corresponding diagnosis method using a fuzzy function, which describes the similarity between the actual observation vector and the fault's characteristic vector, is designed. The experimental results demonstrate that the proposed method can achieve high diagnosis efficiency and accuracy. It can be widely used in the real radar system.展开更多
Graph colouring is the system of assigning a colour to each vertex of a graph.It is done in such a way that adjacent vertices do not have equal colour.It is fundamental in graph theory.It is often used to solve real-w...Graph colouring is the system of assigning a colour to each vertex of a graph.It is done in such a way that adjacent vertices do not have equal colour.It is fundamental in graph theory.It is often used to solve real-world problems like traffic light signalling,map colouring,scheduling,etc.Nowadays,social networks are prevalent systems in our life.Here,the users are considered as vertices,and their connections/interactions are taken as edges.Some users follow other popular users’profiles in these networks,and some don’t,but those non-followers are connected directly to the popular profiles.That means,along with traditional relationship(information flowing),there is another relation among them.It depends on the domination of the relationship between the nodes.This type of situation can be modelled as a directed fuzzy graph.In the colouring of fuzzy graph theory,edge membership plays a vital role.Edge membership is a representation of flowing information between end nodes of the edge.Apart from the communication relationship,there may be some other factors like domination in relation.This influence of power is captured here.In this article,the colouring of directed fuzzy graphs is defined based on the influence of relationship.Along with this,the chromatic number and strong chromatic number are provided,and related properties are investigated.An application regarding COVID-19 infection is presented using the colouring of directed fuzzy graphs.展开更多
Theory of the Cayley graphs is directly linked with the group theory.However,if there are uncertainties on the vertices or edges or both then fuzzy graphs have an extraordinary importance.In this perspective,numbers o...Theory of the Cayley graphs is directly linked with the group theory.However,if there are uncertainties on the vertices or edges or both then fuzzy graphs have an extraordinary importance.In this perspective,numbers of generalηizations of fuzzy graphs have been explored in the literature.Among the others,picture fuzzy graph(PFG)has its own importance.A picture fuzzy graph(PFG)is a pair G=(C,D)defined on a H^(*)=(A,B),where C=(ηC,θ_(C),■_(C))is a picture fuzzy set on A and D=(ηD,θ_(D),■_(D))is a picture fuzzy set over the set B∈A×A such that for any edge mn∈ B with ηD(m,n)≤min(ηC(m),ηC(n)),θD(m,n)≤min(θC(m),θC(n))and ■_(D)(m,n)≥max(■_(C)(m),■_(C)(n)).In this manuscript,we introduce the notion of the Cayley picture fuzzy graphs on groups which is the generalization of the picture fuzzy graphs.Firstly,we discuss few important characteristics of the Cayley picture fuzzy graphs.We show that Cayley picture fuzzy graphs are vertex transitive and hence regular.Then,we investigate different types of Cayley graphs induced by the Cayley picture fuzzy graphs by using different types of cuts.We extensively discuss the term connectivity of the Cayley picture fuzzy graphs.Vertex connectivity and edge connectivity of the Cayley picture fuzzy graphs are also addressed.We also investigate the linkage between these two.Throughout,we provide the extensions of some characηteristics of both the PFGs and Cayley fuzzy graphs in the setting of Cayley picture fuzzy graphs.Finally,we provide the model of interconnected networks based on the Cayley picture fuzzy graphs.展开更多
This paper presented a new graph theoretic construct——fuzzy metagraphs and discussed their applications in constructing fuzzy knowledge base. Fuzzy metagraphs describe the relationships between sets of fuzzy element...This paper presented a new graph theoretic construct——fuzzy metagraphs and discussed their applications in constructing fuzzy knowledge base. Fuzzy metagraphs describe the relationships between sets of fuzzy elements but not single fuzzy element and offer some distinct advantages both for visualization of systems, as well as for formal analysis of system structure. In rule based system, a fuzzy metagraph is a unity of the knowledge base and the reasoning engine. Based on the closure of the adjacency matrix of fuzzy metagraphs, this paper presented an optimized inferential mechanism working mainly by an off line approach. It can greatly increase the efficiency of inference. Finally, it was applied in a daignostic expert system and satisfactory results were obtained.展开更多
Web service composition lets developers create applications on top of service-oriented computing and its native description, discovery, and communication capabilities. This paper mainly focuses on the QoS when the con...Web service composition lets developers create applications on top of service-oriented computing and its native description, discovery, and communication capabilities. This paper mainly focuses on the QoS when the concrete composition structure is unknown. A QoS model of service composition is presented based on the fuzzy directed graph theory. According to the model, a recursive algorithm is also described for calculating such kind of QoS. And, the feasibility of this QoS model and the recursive algorithm is verified by a case study. The proposed approach enables customers to get a possible value of the QoS before they achieve the service.展开更多
In a cloud environment,outsourced graph data is widely used in companies,enterprises,medical institutions,and so on.Data owners and users can save costs and improve efficiency by storing large amounts of graph data on...In a cloud environment,outsourced graph data is widely used in companies,enterprises,medical institutions,and so on.Data owners and users can save costs and improve efficiency by storing large amounts of graph data on cloud servers.Servers on cloud platforms usually have some subjective or objective attacks,which make the outsourced graph data in an insecure state.The issue of privacy data protection has become an important obstacle to data sharing and usage.How to query outsourcing graph data safely and effectively has become the focus of research.Adjacency query is a basic and frequently used operation in graph,and it will effectively promote the query range and query ability if multi-keyword fuzzy search can be supported at the same time.This work proposes to protect the privacy information of outsourcing graph data by encryption,mainly studies the problem of multi-keyword fuzzy adjacency query,and puts forward a solution.In our scheme,we use the Bloom filter and encryption mechanism to build a secure index and query token,and adjacency queries are implemented through indexes and query tokens on the cloud server.Our proposed scheme is proved by formal analysis,and the performance and effectiveness of the scheme are illustrated by experimental analysis.The research results of this work will provide solid theoretical and technical support for the further popularization and application of encrypted graph data processing technology.展开更多
With the rapid growth in the availability of digital health-related data,there is a great demand for the utilization of intelligent information systems within the healthcare sector.These systems can manage and manipul...With the rapid growth in the availability of digital health-related data,there is a great demand for the utilization of intelligent information systems within the healthcare sector.These systems can manage and manipulate this massive amount of health-related data and encourage different decision-making tasks.They can also provide various sustainable health services such as medical error reduction,diagnosis acceleration,and clinical services quality improvement.The intensive care unit(ICU)is one of the most important hospital units.However,there are limited rooms and resources in most hospitals.During times of seasonal diseases and pandemics,ICUs face high admission demand.In line with this increasing number of admissions,determining health risk levels has become an essential and imperative task.It creates a heightened demand for the implementation of an expert decision support system,enabling doctors to accurately and swiftly determine the risk level of patients.Therefore,this study proposes a fuzzy logic inference system built on domain-specific knowledge graphs,as a proof-of-concept,for tackling this healthcare-related issue.The system employs a combination of two sets of fuzzy input parameters to classify health risk levels of new admissions to hospitals.The proposed system implemented utilizes MATLAB Fuzzy Logic Toolbox via several experiments showing the validity of the proposed system.展开更多
The hesitancy fuzzy graphs(HFGs),an extension of fuzzy graphs,are useful tools for dealing with ambiguity and uncertainty in issues involving decision-making(DM).This research implements a correlation coefficient meas...The hesitancy fuzzy graphs(HFGs),an extension of fuzzy graphs,are useful tools for dealing with ambiguity and uncertainty in issues involving decision-making(DM).This research implements a correlation coefficient measure(CCM)to assess the strength of the association between HFGs in this article since CCMs have a high capacity to process and interpret data.The CCM that is proposed between the HFGs has better qualities than the existing ones.It lowers restrictions on the hesitant fuzzy elements’length and may be used to establish whether the HFGs are connected negatively or favorably.Additionally,a CCMbased attribute DM approach is built into a hesitant fuzzy environment.This article suggests the use of weighted correlation coefficient measures(WCCMs)using the CCM concept to quantify the correlation between two HFGs.The decisionmaking problems of hesitancy fuzzy preference relations(HFPRs)are considered.This research proposes a new technique for assessing the relative weights of experts based on the uncertainty of HFPRs and the correlation coefficient degree of each HFPR.This paper determines the ranking order of all alternatives and the best one by using the CCMs between each option and the ideal choice.In the meantime,the appropriate example is given to demonstrate the viability of the new strategies.展开更多
Decision-making(DM)is a process in which several persons concur-rently engage,examine the problems,evaluate potential alternatives,and select an appropriate option to the problem.Technique for determining order prefer...Decision-making(DM)is a process in which several persons concur-rently engage,examine the problems,evaluate potential alternatives,and select an appropriate option to the problem.Technique for determining order preference by similarity to the ideal solution(TOPSIS)is an established DM process.The objective of this report happens to broaden the approach of TOPSIS to solve the DM issues designed with Hesitancy fuzzy data,in which evaluation evidence given by the experts on possible solutions is presents as Hesitancy fuzzy decision matrices,each of which is defined by Hesitancy fuzzy numbers.Findings:we represent analytical results,such as designing a satellite communication network and assessing reservoir operation methods,to demonstrate that our suggested thoughts may be used in DM.Aim:We studied a new testing method for the arti-ficial communication system to give proof of the future construction of satellite earth stations.We aim to identify the best one from the different testing places.We are alsofinding the best operation schemes in the reservoir.In this article,we present the concepts of Laplacian energy(LE)in Hesitancy fuzzy graphs(HFGs),the weight function of LE of HFGs,and the TOPSIS method technique is used to produce the hesitancy fuzzy weighted-average(HFWA).Also,consider practical examples to illustrate the applicability of thefinest design of satellite communication systems and also evaluation of reservoir schemes.展开更多
With the wider growth of web-based documents,the necessity of automatic document clustering and text summarization is increased.Here,document summarization that is extracting the essential task with appropriate inform...With the wider growth of web-based documents,the necessity of automatic document clustering and text summarization is increased.Here,document summarization that is extracting the essential task with appropriate information,removal of unnecessary data and providing the data in a cohesive and coherent manner is determined to be a most confronting task.In this research,a novel intelligent model for document clustering is designed with graph model and Fuzzy based association rule generation(gFAR).Initially,the graph model is used to map the relationship among the data(multi-source)followed by the establishment of document clustering with the generation of association rule using the fuzzy concept.This method shows benefit in redundancy elimination by mapping the relevant document using graph model and reduces the time consumption and improves the accuracy using the association rule generation with fuzzy.This framework is provided in an interpretable way for document clustering.It iteratively reduces the error rate during relationship mapping among the data(clusters)with the assistance of weighted document content.Also,this model represents the significance of data features with class discrimination.It is also helpful in measuring the significance of the features during the data clustering process.The simulation is done with MATLAB 2016b environment and evaluated with the empirical standards like Relative Risk Patterns(RRP),ROUGE score,and Discrimination Information Measure(DMI)respectively.Here,DailyMail and DUC 2004 dataset is used to extract the empirical results.The proposed gFAR model gives better trade-off while compared with various prevailing approaches.展开更多
Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy cl...Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications.展开更多
Aim To improve the causal diagnosis method presented by Bandekar and propose a new method of finding the root fault order according to the fault possibility by means of numerical calculation. Methods Based on the ca...Aim To improve the causal diagnosis method presented by Bandekar and propose a new method of finding the root fault order according to the fault possibility by means of numerical calculation. Methods Based on the causal graph, by utilization of fuzzified threshold value and fuzzy discrimination matrix, a kind of fuzzy causal diagnosis method was given and the fault possibility of each elements in the root fault candidate set (RFCS) was obtained. Results and Conclusion The order of each element in the RFCS can be obtained by the fault possibility, which makes the location of fault much easier. The diagnosis speed of this method is quite high, and by means of the fuzzified threshold value and fuzzy discrimination matrix, the result is more robust to noises and bad parameter's choice.展开更多
Due to the mutual interference and sharing of wireless links in TDMA wireless sensor networks, conflicts will occur when data messages are transmitting between nodes. The broadcast scheduling problem (BSP) is aimed ...Due to the mutual interference and sharing of wireless links in TDMA wireless sensor networks, conflicts will occur when data messages are transmitting between nodes. The broadcast scheduling problem (BSP) is aimed to schedule each node in different slot of fixed length frame at least once, and the objective of BSP is to seek for the optimal feasible solution, which has the shortest length of frame slots, as well as the maximum node transmission. A two-stage mixed algorithm based on a fuzzy Hopfield neural network is proposed to solve this BSP in wireless sensor network. In the first stage, a modified sequential vertex coloring algorithm is adopted to obtain a minimal TDMA frame length. In the second stage, the fuzzy Hopfleld network is utilized to maximize the channel utilization ratio. Experimental results, obtained from the running on three benchmark graphs, show that the algorithm can achieve better performance with shorter frame length and higher channel utilizing ratio than other exiting BSP solutions.展开更多
基金the National Natural Science Foundation of China(No.61371024)the Aviation Science Fund of China(No.2013ZD53051)+1 种基金the IndustryAcademy-Research Project of Aviation Industry Corporation of China(No.cxy2013XGD14)the Space Support Technology Fund of China
文摘To meet the requirement of the real-time, accuracy and multi-target diagnosis of the large radar system,a new fuzzy fault diagnosis method based on directed graph model is proposed in this paper. In this method, the large complex system model is defined using the directed graph model firstly, in which the nodes observing the fault by the hierarchical reconstruction of the directed graph are located, then the fault dependency matrix between these nodes and the fault sources are established. And then, we utilize the sensors' alarm probabilities under different situations to build the characteristic fault observation matrix in the fault observation space. Finally,the optimized corresponding diagnosis method using a fuzzy function, which describes the similarity between the actual observation vector and the fault's characteristic vector, is designed. The experimental results demonstrate that the proposed method can achieve high diagnosis efficiency and accuracy. It can be widely used in the real radar system.
基金supported and funded by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2018R1D1A1B07049321).
文摘Graph colouring is the system of assigning a colour to each vertex of a graph.It is done in such a way that adjacent vertices do not have equal colour.It is fundamental in graph theory.It is often used to solve real-world problems like traffic light signalling,map colouring,scheduling,etc.Nowadays,social networks are prevalent systems in our life.Here,the users are considered as vertices,and their connections/interactions are taken as edges.Some users follow other popular users’profiles in these networks,and some don’t,but those non-followers are connected directly to the popular profiles.That means,along with traditional relationship(information flowing),there is another relation among them.It depends on the domination of the relationship between the nodes.This type of situation can be modelled as a directed fuzzy graph.In the colouring of fuzzy graph theory,edge membership plays a vital role.Edge membership is a representation of flowing information between end nodes of the edge.Apart from the communication relationship,there may be some other factors like domination in relation.This influence of power is captured here.In this article,the colouring of directed fuzzy graphs is defined based on the influence of relationship.Along with this,the chromatic number and strong chromatic number are provided,and related properties are investigated.An application regarding COVID-19 infection is presented using the colouring of directed fuzzy graphs.
文摘Theory of the Cayley graphs is directly linked with the group theory.However,if there are uncertainties on the vertices or edges or both then fuzzy graphs have an extraordinary importance.In this perspective,numbers of generalηizations of fuzzy graphs have been explored in the literature.Among the others,picture fuzzy graph(PFG)has its own importance.A picture fuzzy graph(PFG)is a pair G=(C,D)defined on a H^(*)=(A,B),where C=(ηC,θ_(C),■_(C))is a picture fuzzy set on A and D=(ηD,θ_(D),■_(D))is a picture fuzzy set over the set B∈A×A such that for any edge mn∈ B with ηD(m,n)≤min(ηC(m),ηC(n)),θD(m,n)≤min(θC(m),θC(n))and ■_(D)(m,n)≥max(■_(C)(m),■_(C)(n)).In this manuscript,we introduce the notion of the Cayley picture fuzzy graphs on groups which is the generalization of the picture fuzzy graphs.Firstly,we discuss few important characteristics of the Cayley picture fuzzy graphs.We show that Cayley picture fuzzy graphs are vertex transitive and hence regular.Then,we investigate different types of Cayley graphs induced by the Cayley picture fuzzy graphs by using different types of cuts.We extensively discuss the term connectivity of the Cayley picture fuzzy graphs.Vertex connectivity and edge connectivity of the Cayley picture fuzzy graphs are also addressed.We also investigate the linkage between these two.Throughout,we provide the extensions of some characηteristics of both the PFGs and Cayley fuzzy graphs in the setting of Cayley picture fuzzy graphs.Finally,we provide the model of interconnected networks based on the Cayley picture fuzzy graphs.
文摘This paper presented a new graph theoretic construct——fuzzy metagraphs and discussed their applications in constructing fuzzy knowledge base. Fuzzy metagraphs describe the relationships between sets of fuzzy elements but not single fuzzy element and offer some distinct advantages both for visualization of systems, as well as for formal analysis of system structure. In rule based system, a fuzzy metagraph is a unity of the knowledge base and the reasoning engine. Based on the closure of the adjacency matrix of fuzzy metagraphs, this paper presented an optimized inferential mechanism working mainly by an off line approach. It can greatly increase the efficiency of inference. Finally, it was applied in a daignostic expert system and satisfactory results were obtained.
基金Supported by the National Natural Science Foundation of China(60303025 ,60673017)the Natural Science Foundation of Jiangsu Prov-ince (BK2007137)the Program for New Century Excellent Talents in University
文摘Web service composition lets developers create applications on top of service-oriented computing and its native description, discovery, and communication capabilities. This paper mainly focuses on the QoS when the concrete composition structure is unknown. A QoS model of service composition is presented based on the fuzzy directed graph theory. According to the model, a recursive algorithm is also described for calculating such kind of QoS. And, the feasibility of this QoS model and the recursive algorithm is verified by a case study. The proposed approach enables customers to get a possible value of the QoS before they achieve the service.
基金This research was supported in part by the Nature Science Foundation of China(Nos.62262033,61962029,61762055,62062045 and 62362042)the Jiangxi Provincial Natural Science Foundation of China(Nos.20224BAB202012,20202ACBL202005 and 20202BAB212006)+3 种基金the Science and Technology Research Project of Jiangxi Education Department(Nos.GJJ211815,GJJ2201914 and GJJ201832)the Hubei Natural Science Foundation Innovation and Development Joint Fund Project(No.2022CFD101)Xiangyang High-Tech Key Science and Technology Plan Project(No.2022ABH006848)Hubei Superior and Distinctive Discipline Group of“New Energy Vehicle and Smart Transportation”,the Project of Zhejiang Institute of Mechanical&Electrical Engineering,and the Jiangxi Provincial Social Science Foundation of China(No.23GL52D).
文摘In a cloud environment,outsourced graph data is widely used in companies,enterprises,medical institutions,and so on.Data owners and users can save costs and improve efficiency by storing large amounts of graph data on cloud servers.Servers on cloud platforms usually have some subjective or objective attacks,which make the outsourced graph data in an insecure state.The issue of privacy data protection has become an important obstacle to data sharing and usage.How to query outsourcing graph data safely and effectively has become the focus of research.Adjacency query is a basic and frequently used operation in graph,and it will effectively promote the query range and query ability if multi-keyword fuzzy search can be supported at the same time.This work proposes to protect the privacy information of outsourcing graph data by encryption,mainly studies the problem of multi-keyword fuzzy adjacency query,and puts forward a solution.In our scheme,we use the Bloom filter and encryption mechanism to build a secure index and query token,and adjacency queries are implemented through indexes and query tokens on the cloud server.Our proposed scheme is proved by formal analysis,and the performance and effectiveness of the scheme are illustrated by experimental analysis.The research results of this work will provide solid theoretical and technical support for the further popularization and application of encrypted graph data processing technology.
基金funded by the Deanship of Scientific Research at Umm Al-Qura University,Makkah,Kingdom of Saudi Arabia.Under Grant Code:22UQU4281755DSR05.
文摘With the rapid growth in the availability of digital health-related data,there is a great demand for the utilization of intelligent information systems within the healthcare sector.These systems can manage and manipulate this massive amount of health-related data and encourage different decision-making tasks.They can also provide various sustainable health services such as medical error reduction,diagnosis acceleration,and clinical services quality improvement.The intensive care unit(ICU)is one of the most important hospital units.However,there are limited rooms and resources in most hospitals.During times of seasonal diseases and pandemics,ICUs face high admission demand.In line with this increasing number of admissions,determining health risk levels has become an essential and imperative task.It creates a heightened demand for the implementation of an expert decision support system,enabling doctors to accurately and swiftly determine the risk level of patients.Therefore,this study proposes a fuzzy logic inference system built on domain-specific knowledge graphs,as a proof-of-concept,for tackling this healthcare-related issue.The system employs a combination of two sets of fuzzy input parameters to classify health risk levels of new admissions to hospitals.The proposed system implemented utilizes MATLAB Fuzzy Logic Toolbox via several experiments showing the validity of the proposed system.
基金This research work supported and funded was provided by Vellore Institute of Technology.
文摘The hesitancy fuzzy graphs(HFGs),an extension of fuzzy graphs,are useful tools for dealing with ambiguity and uncertainty in issues involving decision-making(DM).This research implements a correlation coefficient measure(CCM)to assess the strength of the association between HFGs in this article since CCMs have a high capacity to process and interpret data.The CCM that is proposed between the HFGs has better qualities than the existing ones.It lowers restrictions on the hesitant fuzzy elements’length and may be used to establish whether the HFGs are connected negatively or favorably.Additionally,a CCMbased attribute DM approach is built into a hesitant fuzzy environment.This article suggests the use of weighted correlation coefficient measures(WCCMs)using the CCM concept to quantify the correlation between two HFGs.The decisionmaking problems of hesitancy fuzzy preference relations(HFPRs)are considered.This research proposes a new technique for assessing the relative weights of experts based on the uncertainty of HFPRs and the correlation coefficient degree of each HFPR.This paper determines the ranking order of all alternatives and the best one by using the CCMs between each option and the ideal choice.In the meantime,the appropriate example is given to demonstrate the viability of the new strategies.
文摘Decision-making(DM)is a process in which several persons concur-rently engage,examine the problems,evaluate potential alternatives,and select an appropriate option to the problem.Technique for determining order preference by similarity to the ideal solution(TOPSIS)is an established DM process.The objective of this report happens to broaden the approach of TOPSIS to solve the DM issues designed with Hesitancy fuzzy data,in which evaluation evidence given by the experts on possible solutions is presents as Hesitancy fuzzy decision matrices,each of which is defined by Hesitancy fuzzy numbers.Findings:we represent analytical results,such as designing a satellite communication network and assessing reservoir operation methods,to demonstrate that our suggested thoughts may be used in DM.Aim:We studied a new testing method for the arti-ficial communication system to give proof of the future construction of satellite earth stations.We aim to identify the best one from the different testing places.We are alsofinding the best operation schemes in the reservoir.In this article,we present the concepts of Laplacian energy(LE)in Hesitancy fuzzy graphs(HFGs),the weight function of LE of HFGs,and the TOPSIS method technique is used to produce the hesitancy fuzzy weighted-average(HFWA).Also,consider practical examples to illustrate the applicability of thefinest design of satellite communication systems and also evaluation of reservoir schemes.
文摘With the wider growth of web-based documents,the necessity of automatic document clustering and text summarization is increased.Here,document summarization that is extracting the essential task with appropriate information,removal of unnecessary data and providing the data in a cohesive and coherent manner is determined to be a most confronting task.In this research,a novel intelligent model for document clustering is designed with graph model and Fuzzy based association rule generation(gFAR).Initially,the graph model is used to map the relationship among the data(multi-source)followed by the establishment of document clustering with the generation of association rule using the fuzzy concept.This method shows benefit in redundancy elimination by mapping the relevant document using graph model and reduces the time consumption and improves the accuracy using the association rule generation with fuzzy.This framework is provided in an interpretable way for document clustering.It iteratively reduces the error rate during relationship mapping among the data(clusters)with the assistance of weighted document content.Also,this model represents the significance of data features with class discrimination.It is also helpful in measuring the significance of the features during the data clustering process.The simulation is done with MATLAB 2016b environment and evaluated with the empirical standards like Relative Risk Patterns(RRP),ROUGE score,and Discrimination Information Measure(DMI)respectively.Here,DailyMail and DUC 2004 dataset is used to extract the empirical results.The proposed gFAR model gives better trade-off while compared with various prevailing approaches.
基金funded by the Research Project:THTETN.05/24-25,VietnamAcademy of Science and Technology.
文摘Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications.
文摘Aim To improve the causal diagnosis method presented by Bandekar and propose a new method of finding the root fault order according to the fault possibility by means of numerical calculation. Methods Based on the causal graph, by utilization of fuzzified threshold value and fuzzy discrimination matrix, a kind of fuzzy causal diagnosis method was given and the fault possibility of each elements in the root fault candidate set (RFCS) was obtained. Results and Conclusion The order of each element in the RFCS can be obtained by the fault possibility, which makes the location of fault much easier. The diagnosis speed of this method is quite high, and by means of the fuzzified threshold value and fuzzy discrimination matrix, the result is more robust to noises and bad parameter's choice.
基金supported by the National Natural Science Foundation of China (60775047)Hunan Provincial Natural Science Foundation of China (07JJ6111)
文摘Due to the mutual interference and sharing of wireless links in TDMA wireless sensor networks, conflicts will occur when data messages are transmitting between nodes. The broadcast scheduling problem (BSP) is aimed to schedule each node in different slot of fixed length frame at least once, and the objective of BSP is to seek for the optimal feasible solution, which has the shortest length of frame slots, as well as the maximum node transmission. A two-stage mixed algorithm based on a fuzzy Hopfield neural network is proposed to solve this BSP in wireless sensor network. In the first stage, a modified sequential vertex coloring algorithm is adopted to obtain a minimal TDMA frame length. In the second stage, the fuzzy Hopfleld network is utilized to maximize the channel utilization ratio. Experimental results, obtained from the running on three benchmark graphs, show that the algorithm can achieve better performance with shorter frame length and higher channel utilizing ratio than other exiting BSP solutions.