The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of ...The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice.展开更多
The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was...The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation.展开更多
Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such ...Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such as sensitivity enhancement,scanning range extension,and sidelobe level suppression,need to be solved urgently.Here,we propose a sparse optimization scheme based on a genetic algorithm for a 64-array element planar radio antenna array.As optimization targets for the iterative process of the genetic algorithm,we use the maximum sidelobe levels and beamwidth of multiple cross-section patterns that pass through the main beam in three-dimensions,with the maximum sidelobe levels of the patterns at several different scanning angles.Element positions are adjusted for iterations,to select the optimal array configuration.Following sparse layout optimization,the simulated 64-element planar radio antenna array shows that the maximum sidelobe level decreases by 1.79 dB,and the beamwidth narrows by 3°.Within the scan range of±30°,after sparse array optimization,all sidelobe levels decrease,and all beamwidths narrow.This performance improvement can potentially enhance the sensitivity and spatial resolution of radio telescope systems.展开更多
A retrieval algorithm of arctic sea ice concentration (SIC) based on the brightness temperature data of “HY-2” scanning microwave radiometer has been constructed. The tie points of the brightness temperature were ...A retrieval algorithm of arctic sea ice concentration (SIC) based on the brightness temperature data of “HY-2” scanning microwave radiometer has been constructed. The tie points of the brightness temperature were selected based on the statistical analysis of a polarization gradient ratio and a spectral gradient ratio over open water (OW), first-year ice (FYI), and multiyear ice (MYI) in arctic. The thresholds from two weather filters were used to reduce atmospheric effects over the open ocean. SIC retrievals from the “HY-2” radiom-eter data for idealized OW, FYI, and MYI agreed well with theoretical values. The 2012 annual SIC was calcu-lated and compared with two reference operational products from the National Snow and Ice Data Center (NSIDC) and the University of Bremen. The total ice-covered area yielded by the “HY-2” SIC was consistent with the results from the reference products. The assessment of SIC with the aerial photography from the fifth Chinese national arctic research expedition (CHINARE) and six synthetic aperture radar (SAR) images from the National Ice Service was carried out. The “HY-2” SIC product was 16% higher than the values de-rived from the aerial photography in the central arctic. The root-mean-square (RMS) values of SIC between “HY-2” and SAR were comparable with those between the reference products and SAR, varying from 8.57% to 12.34%. The “HY-2” SIC is a promising product that can be used for operational services.展开更多
To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Glo...To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Global-diagnosis sequence algorithm to replace the equal weight algorithm of primary test, and the test time is shortened without changing the fault diagnostic capability. The descriptions of five modified adaptive test algorithms are presented, and the capability comparison between the modified algorithm and the original algorithm is made to prove the validity of these algorithms.展开更多
This paper discusses a kind of optimal method used for searching flat panel display (FPD) scanning matrix. The method adopts bionic algorithm: genetic algorithm (GA) and particle swarm optimization (PSO) algori...This paper discusses a kind of optimal method used for searching flat panel display (FPD) scanning matrix. The method adopts bionic algorithm: genetic algorithm (GA) and particle swarm optimization (PSO) algorithm. The method using single GA is more time-consuming, and the search efficiency is low in later evolution; the PSO algorithm is easily falling into the local optimal solution and appears the premature convergent phenomenon. Hence, a hybrid approach of GAPSO is found to optimize the search for high grayscale weights scanning matrix. Finally in the acceptable time, it finds a weight scanning matrix (WSM) of 256 gray scales with Matlab, whose scanning efficiency reaches 94.73% and the linearity is very good.展开更多
It is difficult to develop image reconstruction algorithms for tomographic gamma scanning based on drummed radioactive residues or wastes.In this paper,a novel reconstruction algorithm of transmission image for tomogr...It is difficult to develop image reconstruction algorithms for tomographic gamma scanning based on drummed radioactive residues or wastes.In this paper,a novel reconstruction algorithm of transmission image for tomographic gamma scanning is proposed.It is based on the conventional transmission equation and equivalent gamma-ray track length modified by a Monte Carlo method.The algorithm is implemented by simulating the samples on the established platform.For the verification experiments of the algorithm,several cubic voxel samples were designed and manufactured.Experimental tests were conducted.The tomographic gamma scanning of transmission images is compared with the linear attenuation coefficients by the simulated values and experimental data with the algorithm and the reference values.The results show that the absolute relative errors of the reconstructed images are less than 5%.展开更多
In this paper, an approximate analytical algorithm in the form of direct Fourier reconstruction is obtained for the recon- struction of data functions arisen from ^-scheme short-scan sin- gle-photon emission computed ...In this paper, an approximate analytical algorithm in the form of direct Fourier reconstruction is obtained for the recon- struction of data functions arisen from ^-scheme short-scan sin- gle-photon emission computed tomography(SPECT) with uniform attenuation, and the modified central slice theorem is developed. Numerical simulations are conducted to demonstrate the effec- tiveness of the developed method.展开更多
In order to optimize the transitional time during the successive exposure scans for a step-and-scan lithography and improve the productivity in a wafer production process, an investigation of the motion trajectory pla...In order to optimize the transitional time during the successive exposure scans for a step-and-scan lithography and improve the productivity in a wafer production process, an investigation of the motion trajectory planning along the scanning direction for wafer stage was carried out. The motions of wafer stage were divided into two respective logical moves (i. e. step-move and scan-move) and the multi-motionoverlap algorithms (MMOA) were presented for optimizing the transitional time between the successive exposure scans. The conventional motion planning method, the Hazelton method and the MMOA were analyzed theoretically and simulated using MATLAB under four different exposure field sizes. The results show that the total time between two successive scans consumed by MMOA is reduced by 4.82%, 2.62%, 3.06% and 3.96%, compared with those of the conventional motion planning method; and reduced by 2.58%, 0.76%, 1.63% and 2.92%, compared with those of the Hazehon method respectively. The theoretical analyses and simulation results illuminate that the MMOA can effectively minimize the transitional step time between successive exposure scans and therefore increase the wafer fabricating productivity.展开更多
基金the National Natural Science Foundation of China(51909136)the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education,Grant No.2022KDZ21Fund of National Major Water Conservancy Project Construction(0001212022CC60001)。
文摘The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice.
基金supported by National Natural Science Foundation of China (52178422)Doctoral Research Foundation of Hubei University of Arts and Science (2059047)National College Students’Innovation and Entrepreneurship Training Program (202210519021).
文摘The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation.
基金supported by the Ministry of Science and Technology SKA Special Project(2020SKA0110202)the Special Project on Building a Science and Technology Innovation Center for South and Southeast Asia–International Joint Innovation Platform in Yunnan Province:"Yunnan Sino-Malaysian International Joint Laboratory of HF-VHF Advanced Radio Astronomy Technology"(202303AP140003)+4 种基金the National Natural Science Foundation of China (NSFC) Joint Fund for Astronomy (JFA) incubator program (U2031133)the International Partnership Program Project of the International Cooperation Bureau of the Chinese Academy of Sciences:"Belt and Road"Cooperation (114A11KYSB20200001)the Kunming Foreign (International) Cooperation Base Program:"Yunnan Observatory of the Chinese Academy of Sciences-University of Malaya Joint R&D Cooperation Base for Advanced Radio Astronomy Technology"(GHJD-2021022)the China-Malaysia Collaborative Research on Space Remote Sensing and Radio Astronomy Observation of Space Weather at Low and Middle Latitudes under the Key Special Project of the State Key R&D Program of the Ministry of Science and Technology for International Cooperation in Science,Technology and Innovation among Governments (2022YFE0140000)the High-precision calibration method for low-frequency radio interferometric arrays for the SKA project of the Ministry of Science and Technology(2020SKA0110300).
文摘Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such as sensitivity enhancement,scanning range extension,and sidelobe level suppression,need to be solved urgently.Here,we propose a sparse optimization scheme based on a genetic algorithm for a 64-array element planar radio antenna array.As optimization targets for the iterative process of the genetic algorithm,we use the maximum sidelobe levels and beamwidth of multiple cross-section patterns that pass through the main beam in three-dimensions,with the maximum sidelobe levels of the patterns at several different scanning angles.Element positions are adjusted for iterations,to select the optimal array configuration.Following sparse layout optimization,the simulated 64-element planar radio antenna array shows that the maximum sidelobe level decreases by 1.79 dB,and the beamwidth narrows by 3°.Within the scan range of±30°,after sparse array optimization,all sidelobe levels decrease,and all beamwidths narrow.This performance improvement can potentially enhance the sensitivity and spatial resolution of radio telescope systems.
基金The International Science and Technology Cooperation Project of China under contract No.2011DFA22260the National Natural Science Foundation of China under contract No.41276191+1 种基金the Public Science and Technology Research Funds Projects of Ocean by the State Oceanic Administration under contract No.201205007-05the Chinese Polar Environment Comprehensive Investigation & Assessment Program by the State Oceanic Administration under contract Nos 2013-02-04 and 2012-04-03-02
文摘A retrieval algorithm of arctic sea ice concentration (SIC) based on the brightness temperature data of “HY-2” scanning microwave radiometer has been constructed. The tie points of the brightness temperature were selected based on the statistical analysis of a polarization gradient ratio and a spectral gradient ratio over open water (OW), first-year ice (FYI), and multiyear ice (MYI) in arctic. The thresholds from two weather filters were used to reduce atmospheric effects over the open ocean. SIC retrievals from the “HY-2” radiom-eter data for idealized OW, FYI, and MYI agreed well with theoretical values. The 2012 annual SIC was calcu-lated and compared with two reference operational products from the National Snow and Ice Data Center (NSIDC) and the University of Bremen. The total ice-covered area yielded by the “HY-2” SIC was consistent with the results from the reference products. The assessment of SIC with the aerial photography from the fifth Chinese national arctic research expedition (CHINARE) and six synthetic aperture radar (SAR) images from the National Ice Service was carried out. The “HY-2” SIC product was 16% higher than the values de-rived from the aerial photography in the central arctic. The root-mean-square (RMS) values of SIC between “HY-2” and SAR were comparable with those between the reference products and SAR, varying from 8.57% to 12.34%. The “HY-2” SIC is a promising product that can be used for operational services.
文摘To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Global-diagnosis sequence algorithm to replace the equal weight algorithm of primary test, and the test time is shortened without changing the fault diagnostic capability. The descriptions of five modified adaptive test algorithms are presented, and the capability comparison between the modified algorithm and the original algorithm is made to prove the validity of these algorithms.
基金supported by the Innovation Foundation of Shanghai University(Grant No.SHUCX112371)
文摘This paper discusses a kind of optimal method used for searching flat panel display (FPD) scanning matrix. The method adopts bionic algorithm: genetic algorithm (GA) and particle swarm optimization (PSO) algorithm. The method using single GA is more time-consuming, and the search efficiency is low in later evolution; the PSO algorithm is easily falling into the local optimal solution and appears the premature convergent phenomenon. Hence, a hybrid approach of GAPSO is found to optimize the search for high grayscale weights scanning matrix. Finally in the acceptable time, it finds a weight scanning matrix (WSM) of 256 gray scales with Matlab, whose scanning efficiency reaches 94.73% and the linearity is very good.
基金Supported by the Foundation for Returned Oversea Chinese Scholars(No.33)
文摘It is difficult to develop image reconstruction algorithms for tomographic gamma scanning based on drummed radioactive residues or wastes.In this paper,a novel reconstruction algorithm of transmission image for tomographic gamma scanning is proposed.It is based on the conventional transmission equation and equivalent gamma-ray track length modified by a Monte Carlo method.The algorithm is implemented by simulating the samples on the established platform.For the verification experiments of the algorithm,several cubic voxel samples were designed and manufactured.Experimental tests were conducted.The tomographic gamma scanning of transmission images is compared with the linear attenuation coefficients by the simulated values and experimental data with the algorithm and the reference values.The results show that the absolute relative errors of the reconstructed images are less than 5%.
基金Supported by the National Natural Science Foundation of China(61271398)the Natural Science Foundation of Ningbo(2012A610031)
文摘In this paper, an approximate analytical algorithm in the form of direct Fourier reconstruction is obtained for the recon- struction of data functions arisen from ^-scheme short-scan sin- gle-photon emission computed tomography(SPECT) with uniform attenuation, and the modified central slice theorem is developed. Numerical simulations are conducted to demonstrate the effec- tiveness of the developed method.
基金the National Basic Research Program of China(No.2003CB716206)the National Natural Science Foundation of China(No.50605025)
文摘In order to optimize the transitional time during the successive exposure scans for a step-and-scan lithography and improve the productivity in a wafer production process, an investigation of the motion trajectory planning along the scanning direction for wafer stage was carried out. The motions of wafer stage were divided into two respective logical moves (i. e. step-move and scan-move) and the multi-motionoverlap algorithms (MMOA) were presented for optimizing the transitional time between the successive exposure scans. The conventional motion planning method, the Hazelton method and the MMOA were analyzed theoretically and simulated using MATLAB under four different exposure field sizes. The results show that the total time between two successive scans consumed by MMOA is reduced by 4.82%, 2.62%, 3.06% and 3.96%, compared with those of the conventional motion planning method; and reduced by 2.58%, 0.76%, 1.63% and 2.92%, compared with those of the Hazehon method respectively. The theoretical analyses and simulation results illuminate that the MMOA can effectively minimize the transitional step time between successive exposure scans and therefore increase the wafer fabricating productivity.