Based on a physical understanding of nonlinearity and mismatch, a novel offset-cancellation technique for low voltage CMOS differential amplifiers is proposed. The technique transfers the offset voltage from the outpu...Based on a physical understanding of nonlinearity and mismatch, a novel offset-cancellation technique for low voltage CMOS differential amplifiers is proposed. The technique transfers the offset voltage from the output to other parts of the differential amplifier and can greatly reduce the input-referred offset voltage without extra power consumption. A 1.8V CMOS differential amplifier is implemented in 0.18μm CMOS process using the proposed technique. The simulation results show that the technique could reduce the input-referred offset voltage of the amplifier by 40% with a 20% load transistor mismatch and a 10% input differential transistor mismatch. Moreover, the proposed technique consumes the least power and achieves the highest integration among various offset-cancellation techniques.展开更多
Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is considered to be the most potential light-absorbing material to replace CuInGaSe_(2)(CIGS),but the actual photoelectric conversion efficiency of such cells is much lower than that of CIG...Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is considered to be the most potential light-absorbing material to replace CuInGaSe_(2)(CIGS),but the actual photoelectric conversion efficiency of such cells is much lower than that of CIGS.One of the reasons is the high recombination rate of carriers at the interface.In this paper,in order to reduce the carrier recombination,a new solar cell structure with double absorber layers of Al-doped ZnO(AZO)/intrinsic(i)-ZnO/CdS/CZTS_(x1)Se_(1−x1)(CZTSSe_(1))/CZTS_(x2)Se_(1−x2)(CZTSSe_(2))/Mo was proposed,and the optimal conduction band offsets(CBOs)of CdS/CZTSSe_(1) interface and CZTSSe_(1)/CZTSSe_(2) interface were determined by changing the S ratio in CZTSSe_(1) and CZTSSe_(2),and the effect of thickness of CZTSSe_(1) on the performance of the cell was studied.The efficiencies of the optimized single and double absorber layers reached 17.97%and 23.4%,respectively.Compared with the single absorber layer structure,the proposed structure with double absorber layers has better cell performance.展开更多
AIM:To compare the visual and optical outcomes following femtosecond laser in situ keratomileusis(FS-LASIK)using an aberration neutral profile with asymmetric offset(AO)and pupil center(PC)treatments.METHODS:In this r...AIM:To compare the visual and optical outcomes following femtosecond laser in situ keratomileusis(FS-LASIK)using an aberration neutral profile with asymmetric offset(AO)and pupil center(PC)treatments.METHODS:In this randomized double-blind clinical trial study,48(24 cases)and 38 eyes(19 cases)underwent myopic astigmatism and hyperopic astigmatism LASIK.One eye of each individual was randomly assigned to AO centration and the fellow eye underwent the PC-centered method.The clinical outcomes including uncorrected visual acuity(UCVA),best-corrected visual acuity(BCVA),safety and efficacy indexes,subjective spherical equivalent(SE)and corneal high-order aberrations(HOAs)were measured at baseline and 6mo postoperatively.RESULTS:In the myopic group,the mean preoperative SE and astigmatism were-4.12±0.87(-2.88 to-6.00)diopter(D)and-0.88±0.79(0 to-2.75)D,respectively.In the hyperopic group,the mean preoperative SE and astigmatism were 0.93±0.59(-0.25 to 2.25)D and-0.73±1.00(0 to-4.25)D,respectively.At 6mo postoperatively,the safety and efficacy indexes were similar for centration in myopic and hyperopic LASIK groups.In the myopic group,significant changes were found in horizontal trefoil(P=0.041)and oblique trefoil(P=0.031)in favor of AO centration treatment.CONCLUSION:Femtosecond-LASIK is a safe and efficacious procedure for treatment of myopic and hyperopic astigmatism.AO-centered and PC-centered approaches provide similar visual and refractive outcomes.Myopic astigmatism LASIK with AO centration leads to slightly better corneal aberration outcomes.展开更多
An investigation on the ventral diverterless high offset S-shaped inlet is carried out at Mach numbers from 0.600 to 1.534, angles of attack from -4° to 9.4°, and yaw angles from 0° to 8°. Results ...An investigation on the ventral diverterless high offset S-shaped inlet is carried out at Mach numbers from 0.600 to 1.534, angles of attack from -4° to 9.4°, and yaw angles from 0° to 8°. Results indicate: (1) a large region of low total pressure exists at the lower part of the inlet exit caused by the counter-rotating vortices in the S-shaped duct; (2) the performances of the inlet at Mach number 1.000 reach almost the highest, so the propulsion system could work efficiently in terms of aerodynamics; (3) the total pressure recovery increases slowly at first and then remains unvaried as the Mach number rises from 0.6 to 1.0, however, it does in an opposite manner in the conventional diverter-equipped S-shaped inlet; (4) the performances of the inlet are generally insensitive to angles of attack from -4° to 9.4° and yaw angles from 0° to 8° at Mach number 0.850, and angles of attack from -2° to 6° and yaw angles from 0° to 5° at Mach number 1.534.展开更多
The forward modeling procedure used in this article is formulated with the volume integral equation based on the tensor Green's function. The electromagnetic components responses are first calculated in the frequency...The forward modeling procedure used in this article is formulated with the volume integral equation based on the tensor Green's function. The electromagnetic components responses are first calculated in the frequency domain and then transformed to the time domain by digital filtering. The valley and hill topography with a layered earth is stimulated by a horizontal electric dipole (HED) transmitter, which is common in field surveys, and the TEM responses are calculated at the transmitter and receivers. The topography effects on the long offset electromagnetic transient (LOTEM) responses are discussed in detail. The results show that both valley and hill topography has significant effect on the LOTEM measurement. If the HED is located in the bottom of a valley, the distortion of the observed anomalous field at distance is severe. A valley at the receiver locations show a strong effect but are localized in space and time. In general, hill-shaped topography shows smaller effects no matter where its located. When the topography is located between source and receivers, the influence is negligible. We conclude that the location of the source is much more important than the receivers and it is critical to put the transmitter in an open flat area in the field survey.展开更多
The reasons for inducing quadrature error and offset error are analyzed and the expressions of quadrature error and offset error are induced. The open-loop system analysis indicates that, in order to avoid the appeara...The reasons for inducing quadrature error and offset error are analyzed and the expressions of quadrature error and offset error are induced. The open-loop system analysis indicates that, in order to avoid the appearance of harmonic peaks, the frequency difference δf between drive mode and sense mode must be less than 1/(2Qy). In order to eliminate the effects of the quadrature error and the offset error, as well as the inherent non- linearity in the capacitance-type sensors, a closed-loop feedback control circuit with quadrature correction is designed. The experimental results indicate that the quadrature error and offset error are corrected. By comparing with open-loop detection, the closed-loop feedback control circuit with quadrature correction decreases the non-linearity of the scale factor from 16. 02% to 0. 35 %, widens the maximum rate capability from ± 270 (°)/s to ± 370 (°)/s and increases the stability of zero bias from 155. 2 (°)/h to 60. 6 (°)/h.展开更多
Land-use changes in coastal wetlands have led to a worldwide degradation of marine coastal ecosystems and a loss of the ecological services they provide. Ecological offsetting is a popular strategy and an effective mi...Land-use changes in coastal wetlands have led to a worldwide degradation of marine coastal ecosystems and a loss of the ecological services they provide. Ecological offsetting is a popular strategy and an effective mitigation measure for ecosystems that have been degraded, damaged, or destroyed and is critical for habitats where natural recovery is hindered. However, the current understanding of the theory and practice of ecological offsetting for coastal wetlands is extremely limited in many developing countries. We conducted a review of ecological offsetting for coastal wetlands projects and studies in China in 1979–2017 to explore the application and limitations of ecological offsetting theory. It was found that China's coastal ecological offsetting regime has recently entered a rapidly developing stage, with an increasing number of different types of offsetting projects conducted, but theoretical research lags behind practical applications. Considerable governmental, social, technological and ethical challenges remain to resolve. Coastal ecological offsetting schemes have been inconsistent in meeting conservation objectives or preventing net losses because of the challenges of ensuring they are fully consistent in practice(mainly in-kind offsets) and theory(mainly out-of-kind offsets). Ecological offsetting projects were primarily implemented by government, developers, and non-profit organizations. The available funding of coastal ecological offsetting projects is insufficient, which makes ecological offsetting a risky operation. Therefore, we propose strategies for improvement that integrate the consideration of theoretical and practical challenges in the offsetting process, while providing a scientific basis and directional guidance for the future practice of biodiversity conservation and environmental management.展开更多
Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high...Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high spectral efficiency and low peak-to-average power ratio(PAPR). Therefore, the QCE-OFDM technique is considered as a promising candidate multi-carrier technique for satellite systems. However, the Doppler effect will cause the carrier frequency offset(CFO), and the non-ideal oscillator will cause the carrier phase offset(CPO) in satellite systems. The CFO and CPO will further result in the bit-error-rate(BER) performance degradation. Hence, it is important to estimate and compensate the CFO and CPO. This paper analyzes the effects of both CFO and CPO in QCE-OFDM satellite systems. Furthermore, we propose a joint CFO and CPO estimation method based on the pilot symbols in the frequency domain. In addition, the optimal pilot symbol structure with different pilot overheads is designed according to the minimum Cramer-Rao bound(CRB) criterion. Simulation results show that the estimation accuracy of the proposed method is close to the CRB.展开更多
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO_(2) and Spiro-OMeTAD were employed as electron...Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO_(2) and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm^(2) and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.展开更多
The alloy temperature dependence of Voffset and Rcontact is studied, and an optimal alloy temperature range for the best trade-off between Voffset and Rcontact, is given for thin base HBTs. In addition,the reason for ...The alloy temperature dependence of Voffset and Rcontact is studied, and an optimal alloy temperature range for the best trade-off between Voffset and Rcontact, is given for thin base HBTs. In addition,the reason for the high Voffset at high alloy temperature is interpreted using Schottky clamped theory. The lower Voffset of our U-shaped emitter HBT than that of traditional strip emitter HBTs is explained.展开更多
文摘Based on a physical understanding of nonlinearity and mismatch, a novel offset-cancellation technique for low voltage CMOS differential amplifiers is proposed. The technique transfers the offset voltage from the output to other parts of the differential amplifier and can greatly reduce the input-referred offset voltage without extra power consumption. A 1.8V CMOS differential amplifier is implemented in 0.18μm CMOS process using the proposed technique. The simulation results show that the technique could reduce the input-referred offset voltage of the amplifier by 40% with a 20% load transistor mismatch and a 10% input differential transistor mismatch. Moreover, the proposed technique consumes the least power and achieves the highest integration among various offset-cancellation techniques.
基金supported by the Science and Technology Innovation Development Program(No.70304901).
文摘Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is considered to be the most potential light-absorbing material to replace CuInGaSe_(2)(CIGS),but the actual photoelectric conversion efficiency of such cells is much lower than that of CIGS.One of the reasons is the high recombination rate of carriers at the interface.In this paper,in order to reduce the carrier recombination,a new solar cell structure with double absorber layers of Al-doped ZnO(AZO)/intrinsic(i)-ZnO/CdS/CZTS_(x1)Se_(1−x1)(CZTSSe_(1))/CZTS_(x2)Se_(1−x2)(CZTSSe_(2))/Mo was proposed,and the optimal conduction band offsets(CBOs)of CdS/CZTSSe_(1) interface and CZTSSe_(1)/CZTSSe_(2) interface were determined by changing the S ratio in CZTSSe_(1) and CZTSSe_(2),and the effect of thickness of CZTSSe_(1) on the performance of the cell was studied.The efficiencies of the optimized single and double absorber layers reached 17.97%and 23.4%,respectively.Compared with the single absorber layer structure,the proposed structure with double absorber layers has better cell performance.
基金Supported by Noor Ophthalmology Research Center.
文摘AIM:To compare the visual and optical outcomes following femtosecond laser in situ keratomileusis(FS-LASIK)using an aberration neutral profile with asymmetric offset(AO)and pupil center(PC)treatments.METHODS:In this randomized double-blind clinical trial study,48(24 cases)and 38 eyes(19 cases)underwent myopic astigmatism and hyperopic astigmatism LASIK.One eye of each individual was randomly assigned to AO centration and the fellow eye underwent the PC-centered method.The clinical outcomes including uncorrected visual acuity(UCVA),best-corrected visual acuity(BCVA),safety and efficacy indexes,subjective spherical equivalent(SE)and corneal high-order aberrations(HOAs)were measured at baseline and 6mo postoperatively.RESULTS:In the myopic group,the mean preoperative SE and astigmatism were-4.12±0.87(-2.88 to-6.00)diopter(D)and-0.88±0.79(0 to-2.75)D,respectively.In the hyperopic group,the mean preoperative SE and astigmatism were 0.93±0.59(-0.25 to 2.25)D and-0.73±1.00(0 to-4.25)D,respectively.At 6mo postoperatively,the safety and efficacy indexes were similar for centration in myopic and hyperopic LASIK groups.In the myopic group,significant changes were found in horizontal trefoil(P=0.041)and oblique trefoil(P=0.031)in favor of AO centration treatment.CONCLUSION:Femtosecond-LASIK is a safe and efficacious procedure for treatment of myopic and hyperopic astigmatism.AO-centered and PC-centered approaches provide similar visual and refractive outcomes.Myopic astigmatism LASIK with AO centration leads to slightly better corneal aberration outcomes.
基金National Basic Research Program of China (5130802)
文摘An investigation on the ventral diverterless high offset S-shaped inlet is carried out at Mach numbers from 0.600 to 1.534, angles of attack from -4° to 9.4°, and yaw angles from 0° to 8°. Results indicate: (1) a large region of low total pressure exists at the lower part of the inlet exit caused by the counter-rotating vortices in the S-shaped duct; (2) the performances of the inlet at Mach number 1.000 reach almost the highest, so the propulsion system could work efficiently in terms of aerodynamics; (3) the total pressure recovery increases slowly at first and then remains unvaried as the Mach number rises from 0.6 to 1.0, however, it does in an opposite manner in the conventional diverter-equipped S-shaped inlet; (4) the performances of the inlet are generally insensitive to angles of attack from -4° to 9.4° and yaw angles from 0° to 8° at Mach number 0.850, and angles of attack from -2° to 6° and yaw angles from 0° to 5° at Mach number 1.534.
基金supported by National Natural Science Foundation of China (Nos. 40727001, 40774073, and 40774074)the National Basic Research Programs of China (973 Program) (No. 2007CB209607)the Doctoral Program of Higher Research and Special funds (No. 20070489001)
文摘The forward modeling procedure used in this article is formulated with the volume integral equation based on the tensor Green's function. The electromagnetic components responses are first calculated in the frequency domain and then transformed to the time domain by digital filtering. The valley and hill topography with a layered earth is stimulated by a horizontal electric dipole (HED) transmitter, which is common in field surveys, and the TEM responses are calculated at the transmitter and receivers. The topography effects on the long offset electromagnetic transient (LOTEM) responses are discussed in detail. The results show that both valley and hill topography has significant effect on the LOTEM measurement. If the HED is located in the bottom of a valley, the distortion of the observed anomalous field at distance is severe. A valley at the receiver locations show a strong effect but are localized in space and time. In general, hill-shaped topography shows smaller effects no matter where its located. When the topography is located between source and receivers, the influence is negligible. We conclude that the location of the source is much more important than the receivers and it is critical to put the transmitter in an open flat area in the field survey.
文摘The reasons for inducing quadrature error and offset error are analyzed and the expressions of quadrature error and offset error are induced. The open-loop system analysis indicates that, in order to avoid the appearance of harmonic peaks, the frequency difference δf between drive mode and sense mode must be less than 1/(2Qy). In order to eliminate the effects of the quadrature error and the offset error, as well as the inherent non- linearity in the capacitance-type sensors, a closed-loop feedback control circuit with quadrature correction is designed. The experimental results indicate that the quadrature error and offset error are corrected. By comparing with open-loop detection, the closed-loop feedback control circuit with quadrature correction decreases the non-linearity of the scale factor from 16. 02% to 0. 35 %, widens the maximum rate capability from ± 270 (°)/s to ± 370 (°)/s and increases the stability of zero bias from 155. 2 (°)/h to 60. 6 (°)/h.
基金Under the auspices of the Chinese Academy of Engineering Advisory Project(No.2018-XZ-14-03)Key Project of National Natural Science Foundation of China(No.51639001)National Key Basic Research Program of China(No.2013CB430406)
文摘Land-use changes in coastal wetlands have led to a worldwide degradation of marine coastal ecosystems and a loss of the ecological services they provide. Ecological offsetting is a popular strategy and an effective mitigation measure for ecosystems that have been degraded, damaged, or destroyed and is critical for habitats where natural recovery is hindered. However, the current understanding of the theory and practice of ecological offsetting for coastal wetlands is extremely limited in many developing countries. We conducted a review of ecological offsetting for coastal wetlands projects and studies in China in 1979–2017 to explore the application and limitations of ecological offsetting theory. It was found that China's coastal ecological offsetting regime has recently entered a rapidly developing stage, with an increasing number of different types of offsetting projects conducted, but theoretical research lags behind practical applications. Considerable governmental, social, technological and ethical challenges remain to resolve. Coastal ecological offsetting schemes have been inconsistent in meeting conservation objectives or preventing net losses because of the challenges of ensuring they are fully consistent in practice(mainly in-kind offsets) and theory(mainly out-of-kind offsets). Ecological offsetting projects were primarily implemented by government, developers, and non-profit organizations. The available funding of coastal ecological offsetting projects is insufficient, which makes ecological offsetting a risky operation. Therefore, we propose strategies for improvement that integrate the consideration of theoretical and practical challenges in the offsetting process, while providing a scientific basis and directional guidance for the future practice of biodiversity conservation and environmental management.
基金supported by the National Natural Science Foundation of China(No.91438114,No.61372111 and No.61601045)
文摘Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high spectral efficiency and low peak-to-average power ratio(PAPR). Therefore, the QCE-OFDM technique is considered as a promising candidate multi-carrier technique for satellite systems. However, the Doppler effect will cause the carrier frequency offset(CFO), and the non-ideal oscillator will cause the carrier phase offset(CPO) in satellite systems. The CFO and CPO will further result in the bit-error-rate(BER) performance degradation. Hence, it is important to estimate and compensate the CFO and CPO. This paper analyzes the effects of both CFO and CPO in QCE-OFDM satellite systems. Furthermore, we propose a joint CFO and CPO estimation method based on the pilot symbols in the frequency domain. In addition, the optimal pilot symbol structure with different pilot overheads is designed according to the minimum Cramer-Rao bound(CRB) criterion. Simulation results show that the estimation accuracy of the proposed method is close to the CRB.
基金funding from the European Union H2020 programme under Excellence research,ERC grant MOLEMAT(726360)PARASOL(RTI2018-102292-B-I00)from Spanish ministry of Science and Innovation。
文摘Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO_(2) and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm^(2) and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.
文摘The alloy temperature dependence of Voffset and Rcontact is studied, and an optimal alloy temperature range for the best trade-off between Voffset and Rcontact, is given for thin base HBTs. In addition,the reason for the high Voffset at high alloy temperature is interpreted using Schottky clamped theory. The lower Voffset of our U-shaped emitter HBT than that of traditional strip emitter HBTs is explained.