期刊文献+
共找到15,169篇文章
< 1 2 250 >
每页显示 20 50 100
A comprehensive evaluation of RNA secondary structures prediction methods
1
作者 Xinlong Chen En Lou +2 位作者 Zouchenyu Zhou Ya-Lan Tan Zhi-Jie Tan 《Chinese Physics B》 2025年第8期115-127,共13页
RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performa... RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures. 展开更多
关键词 RNA secondary structure prediction computational methods comprehensive evaluation traditional methods deep-learning-based methods
原文传递
Data-Driven Combination-Interval Prediction for Landslide Displacement Based on Copula and VMD-WOA-KELM Method
2
作者 Longqi Li Yunhuang Yang +1 位作者 Tianzhi Zhou Mengyun Wang 《Journal of Earth Science》 2025年第1期291-306,共16页
To tackle the difficulties of the point prediction in quantifying the reliability of landslide displacement prediction,a data-driven combination-interval prediction method(CIPM)based on copula and variational-mode-dec... To tackle the difficulties of the point prediction in quantifying the reliability of landslide displacement prediction,a data-driven combination-interval prediction method(CIPM)based on copula and variational-mode-decomposition associated with kernel-based-extreme-learningmachine optimized by the whale optimization algorithm(VMD-WOA-KELM)is proposed in this paper.Firstly,the displacement is decomposed by VMD to three IMF components and a residual component of different fluctuation characteristics.The key impact factors of each IMF component are selected according to Copula model,and the corresponding WOA-KELM is established to conduct point prediction.Subsequently,the parametric method(PM)and non-parametric method(NPM)are used to estimate the prediction error probability density distribution(PDF)of each component,whose prediction interval(PI)under the 95%confidence level is also obtained.By means of the differential evolution algorithm(DE),a weighted combination model based on the PIs is built to construct the combination-interval(CI).Finally,the CIs of each component are added to generate the total PI.A comparative case study shows that the CIPM performs better in constructing landslide displacement PI with high performance. 展开更多
关键词 landslide displacement interval prediction combination method COPULA LANDSLIDES VMD-WOA-KELM
原文传递
Experimental study and prediction method of solid destabilization and production in deep carbonate reservoir during mining
3
作者 Bo Zhou Changyin Dong +3 位作者 Fansheng Huang Dongyu Xue Haobin Bai Guolong Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1085-1101,共17页
Wellbore instability is one of the significant challenges in the drilling engineering and during the development of carbonate reservoirs,especially with open-hole completion.The problems of wellbore instability such a... Wellbore instability is one of the significant challenges in the drilling engineering and during the development of carbonate reservoirs,especially with open-hole completion.The problems of wellbore instability such as downhole collapse and silt deposit in the fractured carbonate reservoir of Tarim Basin(Ordovician)are severe.Solid destabilization and production(SDP)was proposed to describe this engineering problem of carbonate reservoirs.To clarify the mechanism and mitigate potential borehole instability problems,we conducted particle size distribution(PSD)analysis,X-ray diffraction(XRD)analysis,triaxial compression tests,and micro-scale sand production tests based on data analysis.We found that the rock fragments and silt in the wellbore came from two sources:one from the wellbore collapse in the upper unplugged layers and the other from the production of sand particles carried by the fluid in the productive layers.Based on the experimental study,a novel method combining a geomechanical model and microscopic sand production model was proposed to predict wellbore instability and analyze its influencing factors.The critical condition and failure zone predicted by the prediction model fit well with the field observations.According to the prediction results,the management and prevention measures of wellbore instability in carbonate reservoirs were proposed.It is suggested to optimize the well track in new drilling wells while upgrading the production system in old wells.This study is of great guiding significance for the optimization of carbonate solid control and it improves the understanding of the sand production problems in carbonate reservoirs. 展开更多
关键词 Sand production Wellbore stability Carbonate reservoir prediction method
在线阅读 下载PDF
An efficient coal and gas outburst hazard prediction method using an improved limit equilibrium model and stress field detection
4
作者 Yingjie Zhao Dazhao Song +5 位作者 Liming Qiu Majid Khan Xueqiu He Zhenlei Li Yujie Peng Anhu Wang 《International Journal of Coal Science & Technology》 2025年第2期108-122,共15页
Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with C... Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with CGO incidents under low gas pressure conditions.In pursuit of this objective,we have studied and established a mechanical model of the working face under abnormal stress and the excitation energy conditions of CGO,and proposed a method for predicting the risk of CGO under abnormal stress.On site application verification shows that when a strong outburst hazard level prediction is issued,there is a high possibility of outburst disasters occurring.In one of the three locations where we predicted strong outburst hazards,a small outburst occurred,and the accuracy of the prediction was higher than the traditional drilling cuttings index S and drilling cuttings gas desorption index q.Finally,we discuss the mechanism of CGO under the action of stress anomalies.Based on the analysis of stress distribution changes and energy accumulation characteristics of coal under abnormal stress,this article believes that the increase in outburst risk caused by high stress abnormal gradient is mainly due to two reasons:(1)The high stress abnormal gradient leads to an increase in the plastic zone of the coal seam.After the working face advances,it indirectly leads to an increase in the gas expansion energy that can be released from the coal seam before reaching a new stress equilibrium.(2)Abnormal stress leads to increased peak stress of coal body in front of working face.When coal body in elastic area transforms to plastic area,its failure speed is accelerated,which induces accelerated gas desorption and aggravates the risk of outburst. 展开更多
关键词 Coal and gas outburst Mechanical model INSTABILITY Seismic wave tomography prediction method
在线阅读 下载PDF
Dimensional synchronous modeling-based enhanced Kriging algorithm and adaptive Copula method for multi-objective synthetical reliability analyses
5
作者 Cheng LU Yunwen FENG +1 位作者 Chengwei FEI Da TENG 《Chinese Journal of Aeronautics》 2025年第9期144-165,共22页
To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise mode... To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise modeling strategy,cell array operation principle,and Copula theory.Under this framework,we propose a DSM-based Enhanced Kriging(DSMEK)algorithm to synchronously derive the modeling of multi-objective,and explore an adaptive Copula function approach to analyze the correlation among multiple objectives and to assess the synthetical reliability level.In the proposed DSMEK and adaptive Copula methods,the Kriging model is treated as the basis function of DSMEK model,the Multi-Objective Snake Optimizer(MOSO)algorithm is used to search the optimal values of hyperparameters of basis functions,the cell array operation principle is adopted to establish a whole model of multiple objectives,the goodness of fit is utilized to determine the forms of Copula functions,and the determined Copula functions are employed to perform the reliability analyses of the correlation of multi-analytical objectives.Furthermore,three examples,including multi-objective complex function approximation,aeroengine turbine bladeddisc multi-failure mode reliability analyses and aircraft landing gear system brake temperature reliability analyses,are performed to verify the effectiveness of the proposed methods,from the viewpoints of mathematics and engineering.The results show that the DSMEK and adaptive Copula approaches hold obvious advantages in terms of modeling features and simulation performance.The efforts of this work provide a useful way for the modeling of multi-analytical objectives and synthetical reliability analyses of complex structure/system with multi-output responses. 展开更多
关键词 Adaptive Copula method Aeroengine turbine bladeddisc Aircraft landing gear system Correlation of multianalytical objectives Dimensional synchronous modeling-based enhanced Kriging algorithm Reliability analyses
原文传递
Different mathematical methods for ZTD spatial prediction and their performance in BDS PPP augmentation using GNSS network of China
6
作者 Yongzhao FAN Fengyu XIA +1 位作者 Dezhong CHEN Nana JIANG 《Chinese Journal of Aeronautics》 2025年第8期76-92,共17页
The mathematical method of ZTD(zenith tropospheric delay)spatial prediction is important for precise ZTD derivation and real-time precise point positioning(PPP)augmentation.This paper analyses the performance of the p... The mathematical method of ZTD(zenith tropospheric delay)spatial prediction is important for precise ZTD derivation and real-time precise point positioning(PPP)augmentation.This paper analyses the performance of the popular optimal function coefficient(OFC),sphere cap harmonic analysis(SCHA),kriging and inverse distance weighting(IDW)interpolation in ZTD spatial prediction and Beidou satellite navigation system(BDS)-PPP augmentation over China.For ZTD spatial prediction,the average time consumption of the OFC,kriging,and IDW methods is less than 0.1 s,which is significantly better than that of the SCHA method(63.157 s).The overall ZTD precision of the OFC is 3.44 cm,which outperforms those of the SCHA(9.65 cm),Kriging(10.6 cm),and IDW(11.8 cm)methods.We confirmed that the low performance of kriging and IDW is caused by their weakness in modelling ZTD variation in the vertical direction.To mitigate such deficiencies,an elevation normalization factor(ENF)is introduced into the kriging and IDW models(kriging-ENF and IDW-ENF).The overall ZTD spatial prediction accuracies of IDW-ENF and kriging-ENF are 2.80 cm and 2.01 cm,respectively,which are both superior to those of the OFC and the widely used empirical model GPT3(4.92 cm).For BDS-PPP enhancement,the ZTD provided by the kriging-ENF,IDW-ENF and OFC as prior constraints can effectively reduce the convergence time.Compared with unconstrained BDS-PPP,our proposed kriging-ENF outperforms IDW-ENF and OFC by reducing the horizontal and vertical convergence times by approximately 13.2%and 5.8%in Ningxia and 30.4%and 7.84%in Guangdong,respectively.These results indicate that kriging-ENF is a promising method for ZTD spatial prediction and BDS-PPP enhancement over China. 展开更多
关键词 GNSS Zeni thtropospheric delay Zenith tropospheric delay spatial prediction methods Elevation normalization factor Beidou satellite navigation system Precise point positioning augmentation
原文传递
Uncertainties of landslide susceptibility prediction: Influences of random errors in landslide conditioning factors and errors reduction by low pass filter method 被引量:3
7
作者 Faming Huang Zuokui Teng +4 位作者 Chi Yao Shui-Hua Jiang Filippo Catani Wei Chen Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期213-230,共18页
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a... In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors. 展开更多
关键词 Landslide susceptibility prediction Conditioning factor errors Low-pass filter method Machine learning models Interpretability analysis
在线阅读 下载PDF
Strip flatness prediction of cold rolling based on ensemble methods 被引量:1
8
作者 Wu-quan Yang Zhi-ting Zhao +2 位作者 Liang-yu Zhu Xun-yang Gao Li Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第1期237-251,共15页
Aiming at the problem of insufficient prediction accuracy of strip flatness at the outlet of cold tandem rolling,the prediction performance of strip flatness based on different ensemble methods was studied and a high-... Aiming at the problem of insufficient prediction accuracy of strip flatness at the outlet of cold tandem rolling,the prediction performance of strip flatness based on different ensemble methods was studied and a high-precision prediction ensemble model of strip flatness at the outlet was established.Firstly,based on linear regression(LR),K nearest neighbors(KNN),support vector regression,regression trees(RT),and backpropagation neural network(BPN),bagging,boosting,and stacking ensemble methods were used for ensemble experiments.Secondly,three existing ensemble models,i.e.,random forest,extreme random tree(ET)and extreme gradient boosting,were used to conduct experiments and compare the results.The research shows that bagging,boosting,and stacking three ensemble methods have the most significant improvement in the prediction accuracy of the regression trees model,which is increased by 5.28%,6.51%,and 5.32%,respectively.At the same time,the stacking ensemble method improves both the simple model and the complex model,and the improvement effect on the simple base model is the greatest,which is 4.69%higher than that of the base model KNN.Comparing all of the ensemble models,the stacking ensemble model of level-1(ET,AdaBoost-RT,LR,BPN)paired with level-2(LR)was discovered to be the best model(EALB-LR)and can be further studied for industrial applications. 展开更多
关键词 Tandem cold rolling Flatness prediction Machine learning Ensemble method
原文传递
Establishment of Prediction Method of Tourism Meteorological Index in Langzhong Ancient City
9
作者 Rui MA Peiqiang WANG Yuhang YANG 《Meteorological and Environmental Research》 2024年第5期41-44,共4页
Based on the meteorological data of Langzhong from 2010 to 2020,the human body comfort index was calculated,and tourism climate comfort was evaluated to establish the prediction equation of tourism meteorological inde... Based on the meteorological data of Langzhong from 2010 to 2020,the human body comfort index was calculated,and tourism climate comfort was evaluated to establish the prediction equation of tourism meteorological index.OLS was used to compare the correlation between actual tourist flow and tourism meteorological index and test the model effect.Average correlation coefficient R was 0.7017,so the correlation was strong,and P value was 0.The two were significantly correlated at 0.01 level(bilateral).It can be seen that the forecast equation of tourism meteorological index had a strong correlation with the actual number of tourists,and the predicted value was basically close to the actual situation,and the forecast effect is good. 展开更多
关键词 Tourism meteorological index Climate assessment Correlation analysis prediction method Langzhong City
在线阅读 下载PDF
A Review of the Hydrodynamic Damping Characteristics of Blade-like Structures:Focus on the Quantitative Identification Methods and Key Influencing Parameters 被引量:1
10
作者 Yongshun Zeng Zhaohui Qian +1 位作者 Jiayun Zhang Zhifeng Yao 《哈尔滨工程大学学报(英文版)》 2025年第1期21-34,共14页
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev... Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage. 展开更多
关键词 Blade fatigue Hydrodynamic damping ratio Identification method Affecting factors prediction formula
在线阅读 下载PDF
An Objective Synoptic Analysis Technique for the Identification of Tropical Cyclone Remote Precipitation in China and Its Application
11
作者 JIA Li DING Chenchen +2 位作者 CONG Chunhua REN Fumin LIU Yanan 《Journal of Ocean University of China》 2025年第1期13-30,共18页
At present,the identification of tropical cyclone remote precipitation(TRP)requires subjective participation,leading to inconsistent results among different researchers despite adopting the same identification standar... At present,the identification of tropical cyclone remote precipitation(TRP)requires subjective participation,leading to inconsistent results among different researchers despite adopting the same identification standard.Thus,establishing an objective identification method is greatly important.In this study,an objective synoptic analysis technique for TRP(OSAT_TRP)is proposed to identify TRP using daily precipitation datasets,historical tropical cyclone(TC)track data,and the ERA5 reanalysis data.This method includes three steps:first,independent rain belts are separated,and those that might relate to TCs'remote effects are distinguished according to their distance from the TCs.Second,the strong water vapor transport belt from the TC is identified using integrated horizontal water vapor transport(IVT).Third,TRP is distinguished by connecting the first two steps.The TRP obtained through this method can satisfy three criteria,as follows:1)the precipitation occurs outside the circulation of TCs,2)the precipitation is affected by TCs,and 3)a gap exists between the TRP and TC rain belt.Case diagnosis analysis,compared with subjective TRP results and backward trajectory analyses using HYSPLIT,indicates that OSAT_TRP can distinguish TRP even when multiple TCs in the Northwest Pacific are involved.Then,we applied the OSAT_TRP to select typical TRPs and obtained the synoptic-scale environments of the TRP through composite analysis. 展开更多
关键词 tropical cyclone remote precipitation objective identification method
在线阅读 下载PDF
Improving Shallow Foundation Settlement Prediction through Intelligent Optimization Techniques
12
作者 Hadi Fattahi Hossein Ghaedi Danial Jahed Armaghani 《Computer Modeling in Engineering & Sciences》 2025年第4期747-766,共20页
In contemporary geotechnical projects,various approaches are employed for forecasting the settlement of shallow foundations(S_(m)).However,achieving precise modeling of foundation behavior using certain techniques(suc... In contemporary geotechnical projects,various approaches are employed for forecasting the settlement of shallow foundations(S_(m)).However,achieving precise modeling of foundation behavior using certain techniques(such as analytical,numerical,and regression)is challenging and sometimes unattainable.This is primarily due to the inherent nonlinearity of the model,the intricate nature of geotechnical materials,the complex interaction between soil and foundation,and the inherent uncertainty in soil parameters.Therefore,thesemethods often introduce assumptions and simplifications,resulting in relationships that deviate from the actual problem’s reality.In addition,many of these methods demand significant investments of time and resources but neglect to account for the uncertainty inherent in soil/rock parameters.This study explores the application of innovative intelligent techniques to predict S_(m) to address these shortcomings.Specifically,two optimization algorithms,namely teaching-learning-based optimization(TLBO)and harmony search(HS),are harnessed for this purpose.The modeling process involves utilizing input parameters,such as thewidth of the footing(B),the pressure exerted on the footing(q),the count of SPT(Standard Penetration Test)blows(N),the ratio of footing embedment(Df/B),and the footing’s geometry(L/B),during the training phase with a dataset comprising 151 data points.Then,the models’accuracy is assessed during the testing phase using statistical metrics,including the coefficient of determination(R^(2)),mean square error(MSE),and rootmean square error(RMSE),based on a dataset of 38 data points.The findings of this investigation underscore the substantial efficacy of intelligent optimization algorithms as valuable tools for geotechnical engineers when estimating S_(m).In addition,a sensitivity analysis of the input parameters in S_(m) estimation is conducted using@RISK software,revealing that among the various input parameters,the N exerts the most pronounced influence on S_(m). 展开更多
关键词 Shallow foundations optimization algorithms settlement prediction intelligent methods sensitivity analysis
在线阅读 下载PDF
Prediction by simulation in plant breeding
13
作者 Huihui Li Luyan Zhang +1 位作者 Shang Gao Jiankang Wang 《The Crop Journal》 2025年第2期501-509,共9页
Computer simulation permits answering theoretical and applied questions in animal and plant breeding.Blib is a novel multi-module simulation platform,which is able to handle more complicated genetic effects and models... Computer simulation permits answering theoretical and applied questions in animal and plant breeding.Blib is a novel multi-module simulation platform,which is able to handle more complicated genetic effects and models than most existing tools.In this study,we describe one major and unified application module of Blib,i.e.,ISB(abbreviated from in silico breeding),for simulating the three categories of breeding programs for developing clonal,pure-line and hybrid cultivars in plants.Genetic models on environments and breeding-targeted traits,one or several parental populations,and a number of breeding methods are key elements to run simulation experiments in ISB,which are arranged in three external input files by given formats.Applications of ISB are illustrated by three case studies,representing the three categories of plant breeding programs.Under the condition that 5000 F1 progenies were generated and tested from 50 heterozygous parents,Case study I showed that 50 crosses,each of 100 progenies,made the best balance between genetic achievement and field cost.In Case study II,one optimum breeding method was identified by which the pure lines with high yield and medium maturity could be developed.Case study III investigated the genetic consequence in hybrid breeding from five testers.One tester was identified for the simultaneous improvement in F1 hybrids and inbred lines.In summary,ISB identified a balanced crossing scheme,an optimum pure-line selection method,and an optimized tester in three case studies which are relevant to plant breeding.We believe the prediction by simulation would be highly required in front of the next generation of breeding to be driven by informatics and intelligence. 展开更多
关键词 prediction by simulation Plant breeding MODELING Genetic model Breeding method
在线阅读 下载PDF
Quantifying of spatio-temporal variations in the regional gravity field and the effectiveness of earthquake prediction:A case study of M_(S)≥5.0 earthquakes in the Sichuan-Yunnan region during 2021-2024
14
作者 Weimin Xu Shi Chen +9 位作者 Yongbo Li Jiangpei Huang Bing Zheng Yufei Han Zhaohui Chen Qiuyue Zheng Hongyan Lu Linhai Wang Honglei Li Dong Liu 《Earthquake Science》 2025年第4期375-390,共16页
Since the 1975 M_(S)7.3 Haicheng earthquake,spatio-temporal variations in the gravity field have attracted much attention as potential earthquake precursors.Recent technical advances in terrestrial gravity observation... Since the 1975 M_(S)7.3 Haicheng earthquake,spatio-temporal variations in the gravity field have attracted much attention as potential earthquake precursors.Recent technical advances in terrestrial gravity observation,along with the construction of a high-precision mobile gravity network covering Chinese mainland,have positioned temporal gravity variations(GVs)as an important tool for clarifying the signal characteristics and dynamic mechanisms of crustal sources.Reportedly,crustal mass transfer,which is affected by stress state and structural environment,alters the characteristics of the regional gravity field,thus serving as an indicator for locations of moderate to strong earthquakes and a seismology-independent predictor for regions at risk for strong earthquakes.Therefore,quantitatively tracking time-varying gravity is of paramount importance to enhance the effectiveness of earthquake prediction.In this study,we divided the areas effectively covered by the terrestrial mobile gravity network in the Sichuan-Yunnan region into small grids based on the latest observational data(since 2018)from the network.Next,we calculated the 1-and 3-year GVs and gravity gradient indicators(amplitude of analytic signal,AAS;total horizontal derivative,THD;and amplitude of vertical gradient,AVG)to quantitatively characterize variations in regional time-varying gravity field.Next,we assessed the effectiveness of gravity field variations in predicting earthquakes in the Sichuan-Yunnan region using Molchan diagrams constructed for gravity signals of 13 earthquakes(M≥5.0;occurred between 2021 and 2024)within the terrestrial mobile gravity network.The results reveal a certain correspondence between gravity field variations and the locations of moderate and strong earthquakes in the Sichuan-Yunnan region.Furthermore,the 3-year AAS and AVG outperform the 3-year THD in predicting subsequent seismic events.Notably,the AAS and AVG showed large probability gains prior to the M_(S)6.8 Luding earthquake,indicating their potential for earthquake prediction. 展开更多
关键词 gravity variation sichuan-yunnan region molchan diagram method earthquake precursor prediction efficacy
在线阅读 下载PDF
Prediction of velocity and pressure of gas-liquid flow using spectrum-based physics-informed neural networks
15
作者 Nanxi DING Hengzhen FENG +5 位作者 H.Z.LOU Shenghua FU Chenglong LI Zihao ZHANG Wenlong MA Zhengqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期341-356,共16页
This research introduces a spectrum-based physics-informed neural network(SP-PINN)model to significantly improve the accuracy of calculation of two-phase flow parameters,surpassing existing methods that have limitatio... This research introduces a spectrum-based physics-informed neural network(SP-PINN)model to significantly improve the accuracy of calculation of two-phase flow parameters,surpassing existing methods that have limitations in global and continuous data sampling.SP-PINNs address the challenges of traditional methods in terms of continuous sampling by integrating the spectral analysis and pressure correction into the Navier-Stokes(N-S)equations,enhancing the predictive accuracy especially in critical regions like gas-phase boundaries and velocity peaks.The novel introduction of a pressure-correction module within SP-PINNs mitigates prediction errors,achieving a substantial reduction to 1‰compared with the conventional physics-informed neural network(PINN)approaches.Experimental applications validate the model’s ability to accurately and rapidly predict flow parameters with different sampling time intervals,with the computation time of predicting unsampled data less than 0.01 s.Such advancements signify a 100-fold improvement over traditional DNS calculations,underscoring the model’s potential in the real-time calculation and analysis of multiphase flow dynamics. 展开更多
关键词 physics-informed neural network(PINN) spectral method two-phase flow parameter prediction
在线阅读 下载PDF
Rockburst Intensity Prediction based on Kernel Extreme Learning Machine(KELM)
16
作者 XIAO Yidong QI Shengwen +3 位作者 GUO Songfeng ZHANG Shishu WANG Zan GONG Fengqiang 《Acta Geologica Sinica(English Edition)》 2025年第1期284-295,共12页
As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst ... As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst intensity,the problem of rockburst intensity prediction has not been well solved until now.In this study,we collect 292 sets of rockburst data including eight parameters,such as the maximum tangential stress of the surrounding rock σ_(θ),the uniaxial compressive strength of the rockσc,the uniaxial tensile strength of the rock σ_(t),and the strain energy storage index W_(et),etc.from more than 20 underground projects as training sets and establish two new rockburst prediction models based on the kernel extreme learning machine(KELM)combined with the genetic algorithm(KELM-GA)and cross-entropy method(KELM-CEM).To further verify the effect of the two models,ten sets of rockburst data from Shuangjiangkou Hydropower Station are selected for analysis and the results show that new models are more accurate compared with five traditional empirical criteria,especially the model based on KELM-CEM which has the accuracy rate of 90%.Meanwhile,the results of 10 consecutive runs of the model based on KELM-CEM are almost the same,meaning that the model has good stability and reliability for engineering applications. 展开更多
关键词 rockburst intensity prediction kernel extreme learning machine genetic algorithm cross-entropy method
在线阅读 下载PDF
Risk Prediction of Tunnel Water and Mud Inrush Based on Decision-Level Fusion of Multisource Data
17
作者 Shi-shu Zhang Peng Wang +4 位作者 Hua-bo Xiao Huai-bing Wang Yi-guo Xue Wei-dong Chen Kai Zhang 《Applied Geophysics》 2025年第2期472-487,559,560,共18页
This paper addresses the accuracy and timeliness limitations of traditional comprehensive prediction methods by proposing an approach of decision-level fusion of multisource data.A risk prediction indicator system was... This paper addresses the accuracy and timeliness limitations of traditional comprehensive prediction methods by proposing an approach of decision-level fusion of multisource data.A risk prediction indicator system was established for water and mud inrush in tunnels by analyzing advanced prediction data for specifi c tunnel segments.Additionally,the indicator weights were determined using the analytic hierarchy process combined with the Huber weighting method.Subsequently,a multisource data decision-layer fusion algorithm was utilized to generate fused imaging results for tunnel water and mud inrush risk predictions.Meanwhile,risk analysis was performed for different tunnel sections to achieve spatial and temporal complementarity within the indicator system and optimize redundant information.Finally,model feasibility was validated using the CZ Project Sejila Mountain Tunnel segment as a case study,yielding favorable risk prediction results and enabling effi cient information fusion and support for construction decision-making. 展开更多
关键词 Tunnel water and mud inrush prediction methods risk indicators multisource data decision-level fusion
在线阅读 下载PDF
Prediction of Extreme Air Temperature and Wind Speed Along the Northern Sea Route(NSR)with Application for the Safety of Polar Vessels
18
作者 CHAI Wei QI Jian-zhang +3 位作者 HE Lin Bernt J.LEIRA Chana SINSABVARODOM SHU Ya-qing 《China Ocean Engineering》 2025年第4期744-754,共11页
Due to global warming and diminishing ice cover in Arctic regions,the northern sea route(NSR)has attracted increasing attention in recent years.Extreme cold temperatures and high wind speeds in Arctic regions present ... Due to global warming and diminishing ice cover in Arctic regions,the northern sea route(NSR)has attracted increasing attention in recent years.Extreme cold temperatures and high wind speeds in Arctic regions present substantial risks to vessels operating along the NSR.Consequently,analyzing extreme temperature and wind speed values along the NSR is essential for ensuring maritime operational safety in the region.This study analyzes wind and temperature data spanning 40 years,from 1981 to 2020,at four representative sites along the NSR for extreme value analysis.The average conditional exceedance rate(ACER)method and the Gumbel method are employed to estimate extreme wind speed and air temperature at these sites.Comparative analysis reveals that the ACER method provides higher accuracy and lower uncertainty in estimations.The predicted extreme wind speed for a 100-year return period is 30.36 m/s,with a minimum temperature of-56.66°C,varying across the four sites.Furthermore,the study presents extreme values corresponding to each return period,providing temperature extremes as a basis for guiding steel thickness specifications.These findings provide valuable reference for designing polar vessels and offshore structures,contributing to enhanced engineering standards for Arctic conditions. 展开更多
关键词 northern sea route(NSR) air temperature wind speed extreme value prediction ACER method
在线阅读 下载PDF
A review of current studies on the unmanned aerial vehicle-based moving target tracking methods
19
作者 Binbin Yan Yuxin Wei +3 位作者 Shuangxi Liu Wei Huang Ruizhe Feng Xiaoqian Chen 《Defence Technology(防务技术)》 2025年第9期201-219,共19页
Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable track... Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system. 展开更多
关键词 Unmanned aerial vehicle(UAV) Tracking methods Moving targets Information prediction Tracking strategies Swarm cooperation
在线阅读 下载PDF
Principal modes of summer NDVI in eastern Siberia and its climate prediction schemes
20
作者 Yuqing Tian Ke Fan +1 位作者 Hongqing Yang Zhiqing Xu 《Atmospheric and Oceanic Science Letters》 2025年第6期29-36,共8页
Based on a normalized difference vegetation index(NDVI)dataset for 1982-2021,this work investigates the principal modes of interannual variability in summer NDVI over eastern Siberia using the year-to-year increment m... Based on a normalized difference vegetation index(NDVI)dataset for 1982-2021,this work investigates the principal modes of interannual variability in summer NDVI over eastern Siberia using the year-to-year increment method and empirical orthogonal function(EOF)analysis.The first three principal modes(EOF1-3)of the year-to-year increment of summer NDVI(NDVI_DY)exhibit a regionally consistent mode,a western-eastern dipole mode,and a northern-southern dipole mode,respectively.Further analysis shows that sea surface temperature(SST)in the tropical Indian Ocean in February-March and western Siberian soil moisture in April could influence EOF1.EOF2 is modulated by April Northwest Pacific SST and western Siberian soil moisture in May.May North Atlantic SST and sea ice in the Kara Sea in the preceding October significantly affect EOF3.Using the year-to-year increment method and multiple linear regression analysis,prediction schemes for EOF1-3 are developed based on these predictors.To assess the predictive skill of these schemes,one-year-out cross-validation and independent hindcast methods are employed.The temporal correlation coefficients between observed EOF1-3 and the cross-validation results are 0.62,0.46,and 0.37,respectively,exceeding the 95%confidence level.In addition,reconstructed schemes for summer NDVI are developed using predicted NDVI_DY and the observed principal modes of NDVI_DY.Independent hindcasts of NDVI anomalies during 2019-2021 also present consistent distributions with the observed results. 展开更多
关键词 Summer NDVI Eastern Siberia Sea surface temperature Sea ice Soil moisture Year-to-year increment method Climate prediction
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部