The thermogravimetric analyzer and horizontal tube furnace are used to study the effects of operation parameters such as temperature, fuel type, and oxygen concentration on the combustion and NO emission characteristi...The thermogravimetric analyzer and horizontal tube furnace are used to study the effects of operation parameters such as temperature, fuel type, and oxygen concentration on the combustion and NO emission characteristics of the rice husk, rice straw, and peanut shell in the O2/CO2 atmosphere. The results show that the combustion performances of volatile matter and fixed carbon of the three biomasses increase with the increase in the 02 content. The mean NO emission increases sharply when the reaction temperature increases from 700 to 800℃. However, it increases slightly when the temperature exceeds 800 ℃. Meanwhile, the mean NO emission and nitrogen conversion decrease with the increase in the nitrogen content in biomass. The mean NO emission changes little with different oxygen concentrations, and the NO emissions of the three biomasses are all lower than the requirement for the minimum NO emission. Increasing the oxygen concentration favors the biomass combustion in the O2/CO2 atmosphere, and oxygen concentration has little effect on the NO emission.展开更多
The temperature dependence on the reaction of desulfurization reagent CaCO3 and SO2 in O2/CO2 coal combustion was investigated by thcrmogravimetric analysis, X-ray diffraction measurement and pore structure analysis. ...The temperature dependence on the reaction of desulfurization reagent CaCO3 and SO2 in O2/CO2 coal combustion was investigated by thcrmogravimetric analysis, X-ray diffraction measurement and pore structure analysis. The results show that the conversion of the reaction of CaCO3 and SO2 in air is higher at 500-1 100 ℃ and lower at 1 200 ℃ compared with that in O2/CO2 atmosphere. The conversion can be increased by increasing the concentration of SO2, which causes the inhibition of CaSO4 decomposition and shifting of the reaction equilibrium toward the products. XRD analysis of the product shows that the reaction mechanism of CaCO3 and SO2 differs with temperature in O2/CO2 atmosphere, i.e. CaCO3 directly reacts with SO2 at 500 ℃ and CaO from CaCO3 decomposition reacts with SO2 at 1 000 ℃. The pore analysis of the products indicates that the maximum specific surface area of the products accounts for the highest conversion at 1 100 ℃ in O2/CO2 atmosphere. The results reveal that the effect of the atmosphere on the conversion is temperature dependence.展开更多
Ni-Y2O3 nanocomposite powder with uniform distribution of fine oxide particles in the metal matrix was successfully fabricated via solution combustion process followed by hydrogen reduction. The combustion behavior wa...Ni-Y2O3 nanocomposite powder with uniform distribution of fine oxide particles in the metal matrix was successfully fabricated via solution combustion process followed by hydrogen reduction. The combustion behavior was investigated by DTA-TG analysis. The influence of urea to nickel nitrate(U/Ni) ratio on the combustion behavior and morphology evolution of the combusted powder was investigated. The morphological characteristics and phase transformation of the combusted powder and the reduced powder were characterized by FESEM, TEM and XRD. The HRTEM image of Ni-Y2O3 nanocomposite powder indicated that Y2O3 particles with average particle size of about 10 nm dispersed uniformly in the nickel matrix.展开更多
The non-grinding long afterglow material SrAl2O4:Eu^2+ , Dy^3+ was prepared by combustion method in home mierowave oven direetly, after dispersant, frother, eomburent, and mineralizer were added into the reacting s...The non-grinding long afterglow material SrAl2O4:Eu^2+ , Dy^3+ was prepared by combustion method in home mierowave oven direetly, after dispersant, frother, eomburent, and mineralizer were added into the reacting system. XRD analysis showed that the powders were nearly pure SrAl2O4 phase with few other phases, and the size of the grain was 41.1 nm. Fluoreseenee speetrum results indieated that there were 2 exeitation peaks loeated at 345 and 400 nm, and the emission peak loeated at 516 nm, afterglow lasted up to 30 min or more. The mierowave eombustion method has advantages of less time, low temperature and no grinding process, and the material made by the method has good luminescent property.展开更多
Activity and stability of 1%Pd-0.2%Pt/Al2O3 and 1%Pd-0.2%Pt/0.6%Ce/Al2O3 catalysts prepared by impregnation method for catalytic combustion of methane in air were investigated. The catalysts before and after reaction ...Activity and stability of 1%Pd-0.2%Pt/Al2O3 and 1%Pd-0.2%Pt/0.6%Ce/Al2O3 catalysts prepared by impregnation method for catalytic combustion of methane in air were investigated. The catalysts before and after reaction were characterized by BET, CO chemisorption, XRD and XPS techniques. Results showed that the presence of Ce significantly increased the activity and thermal stability of the Pd-Pt/Al2O3 catalyst towards methane combustion, which could be attributed to more highly-dispersed active PdO particles over the Pd-Pt/Ce/Al2O3 catalyst surface as well as the retarded sintering of PdO and the maintained oxidized state of surface Pd during the combustion process in the presence of Ce.展开更多
Galvanic deposition method was used to prepare the Pd/Ni-Al2O3-GD catalyst for the combustion of methane under lean conditions. The new catalyst and compared catalysts (Pd/Al2O3-IW, Pd-Ni/Al2O3-IW, Pd/Ni-Al2O3-IW) p...Galvanic deposition method was used to prepare the Pd/Ni-Al2O3-GD catalyst for the combustion of methane under lean conditions. The new catalyst and compared catalysts (Pd/Al2O3-IW, Pd-Ni/Al2O3-IW, Pd/Ni-Al2O3-IW) prepared by incipient wetness impregnation were characterized by N2-physisorption, XRD and TEM to clarify particle size and size distribution of palladium species. Combined O2-TPD and XPS results with the catalytic data, it shows that the surface palladium species with low valence exhibits better combustion performance due to their stronger interaction with support. The results indicate that the galvanic deposition method is an effective route to prepare efficient catalyst for methane combustion, and it also provides useful information for improving the present commercial catalyst.展开更多
Cubic and monoclinic Gd2O3:Eu3+ phosphors in the range of nano-scale and submicron-scale were prepared by a modified solution combustion method.Coexistence of cubic and monoclinic phases was found in the highest lumin...Cubic and monoclinic Gd2O3:Eu3+ phosphors in the range of nano-scale and submicron-scale were prepared by a modified solution combustion method.Coexistence of cubic and monoclinic phases was found in the highest luminescent sample synthesized at 600 oC.In relation to commercial sample,the relative luminescence intensity was 49.8%.The shape of emission spectrum of the sample thus changed and the charge-transfer-state band of excitation spectrum slightly shift toward higher energies.With increasing the anneal...展开更多
Blue-green luminescent BaAl2O4:Eu2+,Dy3+ phosphor powders were synthesized via combustion synthesis method assisted by microwave irradiation in air. The phosphors were characterized by X-ray diffraction (XRD), sc...Blue-green luminescent BaAl2O4:Eu2+,Dy3+ phosphor powders were synthesized via combustion synthesis method assisted by microwave irradiation in air. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectrophotometer. The XRD results revealed that when the concentration of urea was over 3 times higher than theoretical quantities, a BaAl2O4 single hexagonal phase was obtained. The SEM results revealed that the surface of the BaAl2O4:Eu2+,Dy3+ powder samples showed lots of voids and pores. The BaAl2O4:Eu2+,Dy3+ phosphors exhibited a broad emission band of main peak at 496 nm and a shoulder peak at 426 nm under excitation of 337 nm. The BaAl2O4:Eu2+,Dy3+ phosphors at the Eu2+ concentration of 1 mol.% showed the strongest luminescent intensity. Long afterglow phosphorescence was observed in the dark with naked eyes after the removal of the excitation source.展开更多
Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operatio...Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operational or environmental perspective. In this research, a combined MnFe2O4 oxygen carrier (OC) was synthesized and its reaction with a typical Chinese high sulfur coal, Liuzhi (LZ) bituminous coal, was performed in a thermogravimetric analyzer (TGA)-Fourier transform infrared (FT-IR) spectrometer. Evolution of sulfur species during reaction of LZ coal with MnFeaO40C was systematically investigated through experimental means combined with thermodynamic simulation. TGA-FTIR analysis of the LZ reaction with MnFe2O4 indicated MnFe2O4 exhibited the desired superior reactivity compared to the single reference oxides Mn304 or Fe203, and SO2 produced was mainly related to oxidization of H2S by MnFe2O4. Experimental analysis of the LZ coal reaction with MnFe2O4, including X-ray diffraction and X-ray photoelectron spectroscopy analysis, verified that the main reduced counterparts of MnFe2O4 were Fe304 and MnO, in good agreement with the related thermodynamic simulation. The obtained MnO was beneficial to stabilize the reduced MnFe2O4 and avoid serious sintering, although the oxygen in MnO was not fully utilized. Meanwhile, most sulfur present in LZ coal was converted to solid MnS during LZ reaction with MnFe2O4, which was further oxidized to MnSO4. Finally, the formation of both MnS and such manganese silicates as Mn2SiO4 and MnSiO3 should be addressed to ensure the full regeneration of the reduced MnFe2O4.展开更多
A series of Ceo.sFeo.30Zr0.20O2 catalysts were prepared by different methods (co-precipitations method, citric acid sol-gel method, impregnation method, physical mixed method, and hydrotherrnal method) and character...A series of Ceo.sFeo.30Zr0.20O2 catalysts were prepared by different methods (co-precipitations method, citric acid sol-gel method, impregnation method, physical mixed method, and hydrotherrnal method) and characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET) and H2-TPR measurements. Potential of the catalysts in the soot oxidation was evaluated in a temperature-programmed oxidation (TPO) apparatus. The results showed that all the Fe3+ and Zr4+ were incor- porated into ceria lattice to form a pure Ce-Fe-Zr-O solid solution for the co-precipitation sample, but two kinds of Fe phases ex- isted in the Ce-Fe-Zr-O catalysts prepared by other methods: Fe3+ incorporated into CeO2 lattice and dispersed Fe2O3 clusters. The free Fe2O3 clusters could improve the activity of catalysts for soot oxidation comparing with the pure Ce-Fe-Zr-O solid solution owing to the synergetic effect between free Fe2O3 and surface oxygen vacancies. In addition, the activity of catalysts strongly relied on the surface reducibility of free Fe2O3 particles. Holding both abundant free Fe2O3 particles and high oxygen vacancy concentration, the hydrothermal Ce0.5Fe0.3Zr0.202 catalyst presented the lowest Ti (251℃, ignition temperature of soot oxidation) and Tm (310 ℃, maximum oxidation rate temperature) for soot combustion (with tight-contact between soot and catalysts) among the five samples. Even after aging at 800 ℃ for 10 h, the Ti and Tm were still relatively low, at 273 and 361 ℃, respectively, indicating high catalytic stability.展开更多
Gd2O3:Er^3+nanophosphors were fabricated by the combustion method in presence of Na2 ethylene diamine tetra acetic acid(EDTA-Na2)as fuel at not high temperature(≤350℃)within a very short time of 5 min.The added conc...Gd2O3:Er^3+nanophosphors were fabricated by the combustion method in presence of Na2 ethylene diamine tetra acetic acid(EDTA-Na2)as fuel at not high temperature(≤350℃)within a very short time of 5 min.The added concentration of Er^3+ions in Gd2O3 matrix was changed from 0.5 mol%to 5.0 mol%.The X-ray diffraction pattern of samples indicates the monoclinic structure of Gd2O3:Er^3+.The morphology and chemical composition analysis of the Gd2O3:Er^3+samples are characterized by a field emission scanning electron microscope(FESEM)and a Fourier-transform infrared spectrometer(FTIR).The photoluminescence(PL),photo luminescence excitation(PLE)and upconversion(UC)at room temperature of the prepared materials with different concentrations of Er^3+were investigated.The PL of Gd2O3:Er^3+nanomaterials are shown in visible at 545,594,623,648,688 nm under excitation at 275 nm.The emission bands from transitions of Er^3+from 2P3/2 to 4F9/2 are observed,UC luminescent spectra of the Gd2O3:Er^3+/silica nanocomposites under 976 nm excitation show the bands at 548 and 670 nm.The influence of excitation power at 980 nm for transitions were measured and calculated.The results indicate that the upconversion process of Gd2O3:Er^3+/silica is two photons absorption mechanism.The low temperature dependence of UC luminescent intensities of the main bands of Gd2O3:Er^3+was investigated towards development of a nanotemperature sensor in the range of 10-300 K.展开更多
Y2O3:Eu3+ powders were synthesized by combustion method and the influence of dispersant was investigated.XRD analysis indicated that the particle size increased with a small amount of dispersant firstly and then decre...Y2O3:Eu3+ powders were synthesized by combustion method and the influence of dispersant was investigated.XRD analysis indicated that the particle size increased with a small amount of dispersant firstly and then decreased with a further increase of dispersant.The morphologies of the powders were studied by scanning electron microscopy(SEM) and high-resolution transmission electron microscopy(HRTEM).SEM images revealed that an appropriate amount of dispersant could reduce the agglomeration significantly.Due ...展开更多
Al2O3-metal composite coatings with different reactants and diluents were fabricated on mild steel plate with nonpressure combustion synthesis process. The coat-ings were characterized by means of X-ray diffraction, s...Al2O3-metal composite coatings with different reactants and diluents were fabricated on mild steel plate with nonpressure combustion synthesis process. The coat-ings were characterized by means of X-ray diffraction, scanning electron microscopy, and energy-dispersive spec-trometry, respectively. Thermal shock tests were carried out to determine the bond strength of the coating with the steel substrate. The results indicate that the coating is composed of α-A1203, α-(Fe-Cr) and Al2SiO5 as the main phases. It is found that the coating with the diluents of Al2O3-SiO2 and transition layer of Al2O3-Cr presents the hi.ghest hardness of 2270 HV0.2 and the lowest porosity of 3.93 %. Owing to a metallurgical bond of the coating-to-substrate, the coating exhibits a good thermal shock resistance.展开更多
Gadolinium zirconate(Gd2Zr2O7) nanocrystals were prepared via two different combustion methods: citric acid combustion(CAC) and stearic acid combustion(SAC). The effects of the different preparation methods on ...Gadolinium zirconate(Gd2Zr2O7) nanocrystals were prepared via two different combustion methods: citric acid combustion(CAC) and stearic acid combustion(SAC). The effects of the different preparation methods on the phase composition, microtopography, and sintering densification of the resulting Gd2Zr2O7 nanopowders were investigated by thermal-gravimetric and differential thermal analysis(TG-DTA), Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), and transmission electron microscopy(TEM) techniques. The results indicated that both methods could produce Gd2Zr2O7 nanopowders with an excellent defective fluorite structure. The reaction time was reduced by the SAC method, compared with the CAC method. The nanopowders synthesized by the two methods were different in grain size distribution. The resulting nanoparticle diameter was about 50 nm for CAC and 10 nm for SAC. After vacuum sintering, the sintered bodies also had a different relative density of about 93% and 98%, respectively. Thus the preparation of Gd2Zr2O7 nanopowders by SAC was the first choice to achieve the desired sintering densification.展开更多
Zirconolite is one of the most important matrix materials for nuclear waste immobilization.In this study,Sm was employed as the surrogate of trivalent actinides.Sm-doped zirconolite-rich waste forms were readily prepa...Zirconolite is one of the most important matrix materials for nuclear waste immobilization.In this study,Sm was employed as the surrogate of trivalent actinides.Sm-doped zirconolite-rich waste forms were readily prepared by combustion synthesis(CS)using CuO as the oxidant.Two different schemes with or without Al2O3 as the charge compensator were carried out simultaneously.The results demonstrate that Al2O3 addition results in complex phase composition.On the other hand,the samples without Al2O3 addition show desirable products of zirconolite and pyrochlore.The EDX analysis shows that Sm is concurrently incorporated into the Ca and Zr sites of zirconolite,which transforms to pyrochlore structure with high Sm2O3 contents.The aqueous durability of representative Sm-doped sample(Sm-0.6)was investigated.The 42 days normalized leaching rate of Sm is as low as 6.41×10-7 g/(m2 d),which exhibits high durability of Sm-doped sample.展开更多
Studies the combustion synthesis of Al Ti TiO 2 system and concludes that, due to its low exothermic nature, a stable combustion wave can be maintained only when the system is ignited at a certain preheating temperatu...Studies the combustion synthesis of Al Ti TiO 2 system and concludes that, due to its low exothermic nature, a stable combustion wave can be maintained only when the system is ignited at a certain preheating temperature, and coupled with appropriate pseudo HIP process, dense TiAl/Al 2O 3 composites with density as high as 97% of the theoretical value can be produced, and points out. Microstructure observation shows in situ formed Al 2O 3 particles are of an average size smaller than one micron, and the hardness of TiAl matrix is enhanced by introduction of these particles.展开更多
The Ce0.7Zr0.3O2 solid solution and CeO2 were prepared using the sol-gel method. The phase structure, crystallite sizes and the reducibility of the catalysts were characterized by XRD and H2-TPR techniques. XRD result...The Ce0.7Zr0.3O2 solid solution and CeO2 were prepared using the sol-gel method. The phase structure, crystallite sizes and the reducibility of the catalysts were characterized by XRD and H2-TPR techniques. XRD results indicated that Zr^4+ had replaced part of Ce^4+ to form a fluorite-like solid solution, which was favorable to obtain ultrafine nanoparticles. The ratio of main HE consumption for Ce0.7Zr0.3O2:CeO2 was 4.4:1.0, implying that the solid solution could improve the reducibility compared to the single CeO2. The Ce0.7Zr0.3O2 solid solution catalyst showed a sharp combustion peak at 397 ℃, which was 200 ℃ lower than that of the single soot. The good catalytic activity of the Ce0.7Zr0.3O2 was attributed to the formation of nano-CeO2-based solid solution, which enhanced the reducibility and then improved the combustion activity. As Ce0.7Zr0.3O2 could be easily reduced to Ce0.7Zr0.3O2-x meanwhile, after oxygenation, the Ce0.7Zr0.3O2.x was recovered to Ce0.7Zr0.3O2 completely. A catalytic combustion reaction mechanism was proposed: the Ce0.7Zr0.3O2 was reduced to Ce0.7Zr0.3O2-x by the reaction with carbon and then it was recovered to Ce0.7Zr0.3O2-x by the interaction with O2.展开更多
Novel up-conversion (UC) luminescent nano-powders, CaSc2O4:Yb3+:Er3+ were prepared with a combustion method at an ignition temperature as low as 200 oC. The CaSc2O4:Yb3+,Er3+ nano-powder had an orthorhombic C...Novel up-conversion (UC) luminescent nano-powders, CaSc2O4:Yb3+:Er3+ were prepared with a combustion method at an ignition temperature as low as 200 oC. The CaSc2O4:Yb3+,Er3+ nano-powder had an orthorhombic CaFe2O4-type structure, and showed sphere-like morphology with an average diameter of about 30 nm. It gave strong green (525, 552 nm) and red (652–674 nm) up-conversion luminescence due to the 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3+ under a 980 nm semiconductor laser excitation at room temperature. The optimized doping concentrations for Yb3+ and Er3+ were 6.0 mol.% and 1.0 mol.%, respectively. Effects of ignition temperature and glycine-to-metal nitrate molar ratio on up-conversion emission intensity were also investigated. The log-log plots of luminescence intensity and pump power revealed that the 652–674 nm red emissions and 552 nm green emissions belonged to a two-photon process, while the 525 nm green emissions belonged to a three-photon process. The possible UC mechanisms were briefly discussed.展开更多
High-efficient Tb^3+ activated SrAl2O4 phosphor was synthesized by a combined combustion-solid-state reaction method. The precursor of SrAl2O4:Th^3+ phosphor was prepared via a combustion process, and then the as-p...High-efficient Tb^3+ activated SrAl2O4 phosphor was synthesized by a combined combustion-solid-state reaction method. The precursor of SrAl2O4:Th^3+ phosphor was prepared via a combustion process, and then the as-prepared powder was heated in a reductive ambient of activated carbon at 1250 ℃ for 1 h. The results of X-ray diffraction, scanning electron microscopy, and photoluminescence spectra revealed the influence of the dosage of urea and heated process on the crystallinity, morphology, and photoluminescence of the phosphor. Comparing with traditional solid-sate reaction, the crystallinity and emission intensity of the SrAl2O4:Tb^3+ phosphor were improved by this two-step process.展开更多
To understand the dispersion behavior of metal oxides on composite oxide supports and with the expectation of developing more feasible catalysts for soot oxidation,CuO/La_(2)Sn_(2)O_(7)samples containing varied CuO lo...To understand the dispersion behavior of metal oxides on composite oxide supports and with the expectation of developing more feasible catalysts for soot oxidation,CuO/La_(2)Sn_(2)O_(7)samples containing varied CuO loadings were fabricated and characterized by different techniques and density functional theory calculations.In these catalysts,a spontaneous dispersion of CuO on the La_(2)Sn_(2)O_(7)pyrochlore support formed,having a monolayer dispersion capacity of 1.90 mmol CuO/100 m^(2) La_(2)Sn_(2)O_(7)surface.When loaded below this capacity,CuO exists in a sub-monolayer or monolayer state.X-ray photoelectron spectroscopy(XPS),Raman spectroscopy,and Bader charge and density of states analyses indicate that there are strong interactions between the sub-monolayer/monolayer CuO and the La_(2)Sn_(2)O_(7)support,mainly through the donation of electrons from Cu to Sn at the B-sites of the structure.In contrast,Cu has negligible interactions with La at the A-sites.This suggests that,in composite oxide supports containing multiple metals,the supported metal oxide interacts preferentially with one kind of metal cation in the support.The Raman,in situ diffuse reflectance infrared Fourier transform spectroscopy,and XPS results confirmed the formation of both O2^(-)and O2^(2-)as the active sites on the surfaces of the CuO/La_(2)Sn_(2)O_(7)catalysts,and the concentration of these active species determines the soot combustion activity.The number of active oxygen anions increased with increase in CuO loading until the monolayer dispersion capacity was reached.Above the monolayer dispersion capacity,microsized CuO crystallites formed,and these had a negative effect on the generation of active surface oxygen sites.In summary,a highly active catalyst can be prepared by covering the surface of the La_(2)Sn_(2)O_(7)support with a CuO monolayer.展开更多
基金The Natural Science Foundation of Anhui Province(No.1508085ME73)the Open Foundation of Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education(No.201406)
文摘The thermogravimetric analyzer and horizontal tube furnace are used to study the effects of operation parameters such as temperature, fuel type, and oxygen concentration on the combustion and NO emission characteristics of the rice husk, rice straw, and peanut shell in the O2/CO2 atmosphere. The results show that the combustion performances of volatile matter and fixed carbon of the three biomasses increase with the increase in the 02 content. The mean NO emission increases sharply when the reaction temperature increases from 700 to 800℃. However, it increases slightly when the temperature exceeds 800 ℃. Meanwhile, the mean NO emission and nitrogen conversion decrease with the increase in the nitrogen content in biomass. The mean NO emission changes little with different oxygen concentrations, and the NO emissions of the three biomasses are all lower than the requirement for the minimum NO emission. Increasing the oxygen concentration favors the biomass combustion in the O2/CO2 atmosphere, and oxygen concentration has little effect on the NO emission.
基金Project(50525619) supported by the National Natural Science Foundation of ChinaProject(306012) supported by the Key Foundation of Ministry of Education of China
文摘The temperature dependence on the reaction of desulfurization reagent CaCO3 and SO2 in O2/CO2 coal combustion was investigated by thcrmogravimetric analysis, X-ray diffraction measurement and pore structure analysis. The results show that the conversion of the reaction of CaCO3 and SO2 in air is higher at 500-1 100 ℃ and lower at 1 200 ℃ compared with that in O2/CO2 atmosphere. The conversion can be increased by increasing the concentration of SO2, which causes the inhibition of CaSO4 decomposition and shifting of the reaction equilibrium toward the products. XRD analysis of the product shows that the reaction mechanism of CaCO3 and SO2 differs with temperature in O2/CO2 atmosphere, i.e. CaCO3 directly reacts with SO2 at 500 ℃ and CaO from CaCO3 decomposition reacts with SO2 at 1 000 ℃. The pore analysis of the products indicates that the maximum specific surface area of the products accounts for the highest conversion at 1 100 ℃ in O2/CO2 atmosphere. The results reveal that the effect of the atmosphere on the conversion is temperature dependence.
基金Project(2132046)supported by the Beijing Natural Science Foundation,ChinaProject(51104007)supported by the National Natural Science Foundation of China
文摘Ni-Y2O3 nanocomposite powder with uniform distribution of fine oxide particles in the metal matrix was successfully fabricated via solution combustion process followed by hydrogen reduction. The combustion behavior was investigated by DTA-TG analysis. The influence of urea to nickel nitrate(U/Ni) ratio on the combustion behavior and morphology evolution of the combusted powder was investigated. The morphological characteristics and phase transformation of the combusted powder and the reduced powder were characterized by FESEM, TEM and XRD. The HRTEM image of Ni-Y2O3 nanocomposite powder indicated that Y2O3 particles with average particle size of about 10 nm dispersed uniformly in the nickel matrix.
基金Project supported by the National Natural Science Foundation of China (20476002)
文摘The non-grinding long afterglow material SrAl2O4:Eu^2+ , Dy^3+ was prepared by combustion method in home mierowave oven direetly, after dispersant, frother, eomburent, and mineralizer were added into the reacting system. XRD analysis showed that the powders were nearly pure SrAl2O4 phase with few other phases, and the size of the grain was 41.1 nm. Fluoreseenee speetrum results indieated that there were 2 exeitation peaks loeated at 345 and 400 nm, and the emission peak loeated at 516 nm, afterglow lasted up to 30 min or more. The mierowave eombustion method has advantages of less time, low temperature and no grinding process, and the material made by the method has good luminescent property.
基金supported by the National High Technology Research and Development Program (863) of China (No.2010AA064904)
文摘Activity and stability of 1%Pd-0.2%Pt/Al2O3 and 1%Pd-0.2%Pt/0.6%Ce/Al2O3 catalysts prepared by impregnation method for catalytic combustion of methane in air were investigated. The catalysts before and after reaction were characterized by BET, CO chemisorption, XRD and XPS techniques. Results showed that the presence of Ce significantly increased the activity and thermal stability of the Pd-Pt/Al2O3 catalyst towards methane combustion, which could be attributed to more highly-dispersed active PdO particles over the Pd-Pt/Ce/Al2O3 catalyst surface as well as the retarded sintering of PdO and the maintained oxidized state of surface Pd during the combustion process in the presence of Ce.
基金supported by the National Natural Science Foundation of China (21273221)the National High Technology Research and Development Program of China (863 Program, 2011AA03A406)
文摘Galvanic deposition method was used to prepare the Pd/Ni-Al2O3-GD catalyst for the combustion of methane under lean conditions. The new catalyst and compared catalysts (Pd/Al2O3-IW, Pd-Ni/Al2O3-IW, Pd/Ni-Al2O3-IW) prepared by incipient wetness impregnation were characterized by N2-physisorption, XRD and TEM to clarify particle size and size distribution of palladium species. Combined O2-TPD and XPS results with the catalytic data, it shows that the surface palladium species with low valence exhibits better combustion performance due to their stronger interaction with support. The results indicate that the galvanic deposition method is an effective route to prepare efficient catalyst for methane combustion, and it also provides useful information for improving the present commercial catalyst.
基金supported by the Ministry of Science and Technology of China (2006CB601104)the Foundation of International Joint Research of Beijing (2007N08)+1 种基金Natural Science Foundation of Jiangxi Province (2009GQC0042)Foundation of Jiangxi Educational Committee (GJJ10153)
文摘Cubic and monoclinic Gd2O3:Eu3+ phosphors in the range of nano-scale and submicron-scale were prepared by a modified solution combustion method.Coexistence of cubic and monoclinic phases was found in the highest luminescent sample synthesized at 600 oC.In relation to commercial sample,the relative luminescence intensity was 49.8%.The shape of emission spectrum of the sample thus changed and the charge-transfer-state band of excitation spectrum slightly shift toward higher energies.With increasing the anneal...
基金supported by the National Natural Science Foundation of China (60477034)
文摘Blue-green luminescent BaAl2O4:Eu2+,Dy3+ phosphor powders were synthesized via combustion synthesis method assisted by microwave irradiation in air. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectrophotometer. The XRD results revealed that when the concentration of urea was over 3 times higher than theoretical quantities, a BaAl2O4 single hexagonal phase was obtained. The SEM results revealed that the surface of the BaAl2O4:Eu2+,Dy3+ powder samples showed lots of voids and pores. The BaAl2O4:Eu2+,Dy3+ phosphors exhibited a broad emission band of main peak at 496 nm and a shoulder peak at 426 nm under excitation of 337 nm. The BaAl2O4:Eu2+,Dy3+ phosphors at the Eu2+ concentration of 1 mol.% showed the strongest luminescent intensity. Long afterglow phosphorescence was observed in the dark with naked eyes after the removal of the excitation source.
基金supported by the National Natural Science Foundation of China(No.51276210,50906030,50936001)the financial grant of North China University of Water Conservancy and Electric Power(No.201012)the National Basic Research Program(973)of China(No.2011CB707301)
文摘Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operational or environmental perspective. In this research, a combined MnFe2O4 oxygen carrier (OC) was synthesized and its reaction with a typical Chinese high sulfur coal, Liuzhi (LZ) bituminous coal, was performed in a thermogravimetric analyzer (TGA)-Fourier transform infrared (FT-IR) spectrometer. Evolution of sulfur species during reaction of LZ coal with MnFeaO40C was systematically investigated through experimental means combined with thermodynamic simulation. TGA-FTIR analysis of the LZ reaction with MnFe2O4 indicated MnFe2O4 exhibited the desired superior reactivity compared to the single reference oxides Mn304 or Fe203, and SO2 produced was mainly related to oxidization of H2S by MnFe2O4. Experimental analysis of the LZ coal reaction with MnFe2O4, including X-ray diffraction and X-ray photoelectron spectroscopy analysis, verified that the main reduced counterparts of MnFe2O4 were Fe304 and MnO, in good agreement with the related thermodynamic simulation. The obtained MnO was beneficial to stabilize the reduced MnFe2O4 and avoid serious sintering, although the oxygen in MnO was not fully utilized. Meanwhile, most sulfur present in LZ coal was converted to solid MnS during LZ reaction with MnFe2O4, which was further oxidized to MnSO4. Finally, the formation of both MnS and such manganese silicates as Mn2SiO4 and MnSiO3 should be addressed to ensure the full regeneration of the reduced MnFe2O4.
基金Project supported by National Natural Science Foundation of China(51374004,51204083,51174105,51104074)Natural Science Foundation of Yunnan Province(2010ZC018)
文摘A series of Ceo.sFeo.30Zr0.20O2 catalysts were prepared by different methods (co-precipitations method, citric acid sol-gel method, impregnation method, physical mixed method, and hydrotherrnal method) and characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET) and H2-TPR measurements. Potential of the catalysts in the soot oxidation was evaluated in a temperature-programmed oxidation (TPO) apparatus. The results showed that all the Fe3+ and Zr4+ were incor- porated into ceria lattice to form a pure Ce-Fe-Zr-O solid solution for the co-precipitation sample, but two kinds of Fe phases ex- isted in the Ce-Fe-Zr-O catalysts prepared by other methods: Fe3+ incorporated into CeO2 lattice and dispersed Fe2O3 clusters. The free Fe2O3 clusters could improve the activity of catalysts for soot oxidation comparing with the pure Ce-Fe-Zr-O solid solution owing to the synergetic effect between free Fe2O3 and surface oxygen vacancies. In addition, the activity of catalysts strongly relied on the surface reducibility of free Fe2O3 particles. Holding both abundant free Fe2O3 particles and high oxygen vacancy concentration, the hydrothermal Ce0.5Fe0.3Zr0.202 catalyst presented the lowest Ti (251℃, ignition temperature of soot oxidation) and Tm (310 ℃, maximum oxidation rate temperature) for soot combustion (with tight-contact between soot and catalysts) among the five samples. Even after aging at 800 ℃ for 10 h, the Ti and Tm were still relatively low, at 273 and 361 ℃, respectively, indicating high catalytic stability.
基金Project supported by the Vietnam National Foundation for Science and Technology Development(NAFOSTED)(103.03-2015.85)
文摘Gd2O3:Er^3+nanophosphors were fabricated by the combustion method in presence of Na2 ethylene diamine tetra acetic acid(EDTA-Na2)as fuel at not high temperature(≤350℃)within a very short time of 5 min.The added concentration of Er^3+ions in Gd2O3 matrix was changed from 0.5 mol%to 5.0 mol%.The X-ray diffraction pattern of samples indicates the monoclinic structure of Gd2O3:Er^3+.The morphology and chemical composition analysis of the Gd2O3:Er^3+samples are characterized by a field emission scanning electron microscope(FESEM)and a Fourier-transform infrared spectrometer(FTIR).The photoluminescence(PL),photo luminescence excitation(PLE)and upconversion(UC)at room temperature of the prepared materials with different concentrations of Er^3+were investigated.The PL of Gd2O3:Er^3+nanomaterials are shown in visible at 545,594,623,648,688 nm under excitation at 275 nm.The emission bands from transitions of Er^3+from 2P3/2 to 4F9/2 are observed,UC luminescent spectra of the Gd2O3:Er^3+/silica nanocomposites under 976 nm excitation show the bands at 548 and 670 nm.The influence of excitation power at 980 nm for transitions were measured and calculated.The results indicate that the upconversion process of Gd2O3:Er^3+/silica is two photons absorption mechanism.The low temperature dependence of UC luminescent intensities of the main bands of Gd2O3:Er^3+was investigated towards development of a nanotemperature sensor in the range of 10-300 K.
基金supported by the National Natural Science Foundation of China (10774140)Knowledge Innovation Project of the Chinese Academy of Sciences (KJCX2-YW-M11)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (20060358054)Special Foundation for Talents of Anhui Province,China (2007Z021)
文摘Y2O3:Eu3+ powders were synthesized by combustion method and the influence of dispersant was investigated.XRD analysis indicated that the particle size increased with a small amount of dispersant firstly and then decreased with a further increase of dispersant.The morphologies of the powders were studied by scanning electron microscopy(SEM) and high-resolution transmission electron microscopy(HRTEM).SEM images revealed that an appropriate amount of dispersant could reduce the agglomeration significantly.Due ...
基金financially supported by the Ministry of Education of China(No.625010312)
文摘Al2O3-metal composite coatings with different reactants and diluents were fabricated on mild steel plate with nonpressure combustion synthesis process. The coat-ings were characterized by means of X-ray diffraction, scanning electron microscopy, and energy-dispersive spec-trometry, respectively. Thermal shock tests were carried out to determine the bond strength of the coating with the steel substrate. The results indicate that the coating is composed of α-A1203, α-(Fe-Cr) and Al2SiO5 as the main phases. It is found that the coating with the diluents of Al2O3-SiO2 and transition layer of Al2O3-Cr presents the hi.ghest hardness of 2270 HV0.2 and the lowest porosity of 3.93 %. Owing to a metallurgical bond of the coating-to-substrate, the coating exhibits a good thermal shock resistance.
文摘Gadolinium zirconate(Gd2Zr2O7) nanocrystals were prepared via two different combustion methods: citric acid combustion(CAC) and stearic acid combustion(SAC). The effects of the different preparation methods on the phase composition, microtopography, and sintering densification of the resulting Gd2Zr2O7 nanopowders were investigated by thermal-gravimetric and differential thermal analysis(TG-DTA), Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), and transmission electron microscopy(TEM) techniques. The results indicated that both methods could produce Gd2Zr2O7 nanopowders with an excellent defective fluorite structure. The reaction time was reduced by the SAC method, compared with the CAC method. The nanopowders synthesized by the two methods were different in grain size distribution. The resulting nanoparticle diameter was about 50 nm for CAC and 10 nm for SAC. After vacuum sintering, the sintered bodies also had a different relative density of about 93% and 98%, respectively. Thus the preparation of Gd2Zr2O7 nanopowders by SAC was the first choice to achieve the desired sintering densification.
基金Projects supported by the National Natural Science Foundation of China(51202203,51672228)the Project of State Key Laboratory of Environment-friendly Energy Materials(17FKSY0104)Science Development Foundation of China Academy of Engineering Physics
文摘Zirconolite is one of the most important matrix materials for nuclear waste immobilization.In this study,Sm was employed as the surrogate of trivalent actinides.Sm-doped zirconolite-rich waste forms were readily prepared by combustion synthesis(CS)using CuO as the oxidant.Two different schemes with or without Al2O3 as the charge compensator were carried out simultaneously.The results demonstrate that Al2O3 addition results in complex phase composition.On the other hand,the samples without Al2O3 addition show desirable products of zirconolite and pyrochlore.The EDX analysis shows that Sm is concurrently incorporated into the Ca and Zr sites of zirconolite,which transforms to pyrochlore structure with high Sm2O3 contents.The aqueous durability of representative Sm-doped sample(Sm-0.6)was investigated.The 42 days normalized leaching rate of Sm is as low as 6.41×10-7 g/(m2 d),which exhibits high durability of Sm-doped sample.
文摘Studies the combustion synthesis of Al Ti TiO 2 system and concludes that, due to its low exothermic nature, a stable combustion wave can be maintained only when the system is ignited at a certain preheating temperature, and coupled with appropriate pseudo HIP process, dense TiAl/Al 2O 3 composites with density as high as 97% of the theoretical value can be produced, and points out. Microstructure observation shows in situ formed Al 2O 3 particles are of an average size smaller than one micron, and the hardness of TiAl matrix is enhanced by introduction of these particles.
基金the Natural Science Foundation of Zhejiang Province (Z404383)
文摘The Ce0.7Zr0.3O2 solid solution and CeO2 were prepared using the sol-gel method. The phase structure, crystallite sizes and the reducibility of the catalysts were characterized by XRD and H2-TPR techniques. XRD results indicated that Zr^4+ had replaced part of Ce^4+ to form a fluorite-like solid solution, which was favorable to obtain ultrafine nanoparticles. The ratio of main HE consumption for Ce0.7Zr0.3O2:CeO2 was 4.4:1.0, implying that the solid solution could improve the reducibility compared to the single CeO2. The Ce0.7Zr0.3O2 solid solution catalyst showed a sharp combustion peak at 397 ℃, which was 200 ℃ lower than that of the single soot. The good catalytic activity of the Ce0.7Zr0.3O2 was attributed to the formation of nano-CeO2-based solid solution, which enhanced the reducibility and then improved the combustion activity. As Ce0.7Zr0.3O2 could be easily reduced to Ce0.7Zr0.3O2-x meanwhile, after oxygenation, the Ce0.7Zr0.3O2.x was recovered to Ce0.7Zr0.3O2 completely. A catalytic combustion reaction mechanism was proposed: the Ce0.7Zr0.3O2 was reduced to Ce0.7Zr0.3O2-x by the reaction with carbon and then it was recovered to Ce0.7Zr0.3O2-x by the interaction with O2.
基金supported by the National Natural Science Foundation of China (30670523)the Fundamental Research Funds for the Central Universities
文摘Novel up-conversion (UC) luminescent nano-powders, CaSc2O4:Yb3+:Er3+ were prepared with a combustion method at an ignition temperature as low as 200 oC. The CaSc2O4:Yb3+,Er3+ nano-powder had an orthorhombic CaFe2O4-type structure, and showed sphere-like morphology with an average diameter of about 30 nm. It gave strong green (525, 552 nm) and red (652–674 nm) up-conversion luminescence due to the 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3+ under a 980 nm semiconductor laser excitation at room temperature. The optimized doping concentrations for Yb3+ and Er3+ were 6.0 mol.% and 1.0 mol.%, respectively. Effects of ignition temperature and glycine-to-metal nitrate molar ratio on up-conversion emission intensity were also investigated. The log-log plots of luminescence intensity and pump power revealed that the 652–674 nm red emissions and 552 nm green emissions belonged to a two-photon process, while the 525 nm green emissions belonged to a three-photon process. The possible UC mechanisms were briefly discussed.
基金Tianjin Natural Science Foundation (06TXTJJC14600, 07JCYBJC06400)the Key Technologies R&D Program of Shandong Province (2006gg2201014)
文摘High-efficient Tb^3+ activated SrAl2O4 phosphor was synthesized by a combined combustion-solid-state reaction method. The precursor of SrAl2O4:Th^3+ phosphor was prepared via a combustion process, and then the as-prepared powder was heated in a reductive ambient of activated carbon at 1250 ℃ for 1 h. The results of X-ray diffraction, scanning electron microscopy, and photoluminescence spectra revealed the influence of the dosage of urea and heated process on the crystallinity, morphology, and photoluminescence of the phosphor. Comparing with traditional solid-sate reaction, the crystallinity and emission intensity of the SrAl2O4:Tb^3+ phosphor were improved by this two-step process.
文摘To understand the dispersion behavior of metal oxides on composite oxide supports and with the expectation of developing more feasible catalysts for soot oxidation,CuO/La_(2)Sn_(2)O_(7)samples containing varied CuO loadings were fabricated and characterized by different techniques and density functional theory calculations.In these catalysts,a spontaneous dispersion of CuO on the La_(2)Sn_(2)O_(7)pyrochlore support formed,having a monolayer dispersion capacity of 1.90 mmol CuO/100 m^(2) La_(2)Sn_(2)O_(7)surface.When loaded below this capacity,CuO exists in a sub-monolayer or monolayer state.X-ray photoelectron spectroscopy(XPS),Raman spectroscopy,and Bader charge and density of states analyses indicate that there are strong interactions between the sub-monolayer/monolayer CuO and the La_(2)Sn_(2)O_(7)support,mainly through the donation of electrons from Cu to Sn at the B-sites of the structure.In contrast,Cu has negligible interactions with La at the A-sites.This suggests that,in composite oxide supports containing multiple metals,the supported metal oxide interacts preferentially with one kind of metal cation in the support.The Raman,in situ diffuse reflectance infrared Fourier transform spectroscopy,and XPS results confirmed the formation of both O2^(-)and O2^(2-)as the active sites on the surfaces of the CuO/La_(2)Sn_(2)O_(7)catalysts,and the concentration of these active species determines the soot combustion activity.The number of active oxygen anions increased with increase in CuO loading until the monolayer dispersion capacity was reached.Above the monolayer dispersion capacity,microsized CuO crystallites formed,and these had a negative effect on the generation of active surface oxygen sites.In summary,a highly active catalyst can be prepared by covering the surface of the La_(2)Sn_(2)O_(7)support with a CuO monolayer.