Here we complete our work on the asymptotics of Hankel determinants studying the case wherein the entries are “ultrarapidly”-varying functions in the sense that their logarithms are rapidly varying. Moreover, the la...Here we complete our work on the asymptotics of Hankel determinants studying the case wherein the entries are “ultrarapidly”-varying functions in the sense that their logarithms are rapidly varying. Moreover, the last results in the paper highlight analogies between algebraic identities for Hankelians with special entries and asymptotic relations valid for large classes of entries.展开更多
The rich literature concerning “asymptotic behavior of Hankel determinants” concerns the behavior, as the order n tends to ∞, of Hankel determinants whose entries are numbers, e.g., with a combinatorial interest or...The rich literature concerning “asymptotic behavior of Hankel determinants” concerns the behavior, as the order n tends to ∞, of Hankel determinants whose entries are numbers, e.g., with a combinatorial interest or arising as values of special classes of functions. Such determinants are numbers depending on n, playing roles in number theory, combinatorics, random matrices and the like;and mathematicians in the involved fields have been interested in their asymptotic behaviors as n goes to ∞, as previously mentioned, with no single exception to the author’s knowledge. The study carried on in the present paper treats an altogether different situation as suggested by the specification in the title “as the variable tends to +∞”. We deal with those types of Hankel determinants (purposely called Hankelians) which are special cases of Wronskians and, continuing our work on the asymptotics of Wronskians, we study the asymptotic behaviors of n-order Hankelians, whose entries involve either regularly- or rapidly-varying functions, when the variable tends to +∞. As in the study of Wronskians, the treatment of this case also needs the whole apparatus of the theory of higher-order types of asymptotic variation, but the most demanding results are not automatic corollaries of the general theory. In fact, in the study of generic Wronskians (study motivated by applications to asymptotic expansions), the entries were required to belong to one of the classes of “higher-order regular or rapid variation”;on the contrary, in the case of Hankelians, we are confronted with functions whose logarithms are either “regularly- or rapidly-varying functions”, roughly classifiable as “ultrarapidly-varying functions”, and the study requires both special devices and a number of preliminary lemmas about products and linear combinations of functions in the mentioned classes.展开更多
This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Bas...This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Based on material deterioration mechanisms and incremental dynamic analysis, the time-evolving seismic demands of components were obtained in the form of marginal probability distributions. The time-varying dependences among bridge components were then captured with the best fitting copula function, which was selected from the commonly used copula classes by the empirical distribution based analysis method. The system time-variant fragility curves at different damage states were developed and the effects of time-varying dependences among components on the bridge system fragility were investigated. The results indicate the time-varying dependence among components significantly affects the time-variant fragility of the bridge system. The copula technique captures the nonlinear dependence among component seismic demands accurately and easily by separating the marginal distributions and the dependence among them.展开更多
The purpose of this paper is to add some complements to the general theory of higher-order types of asymptotic variation developed in two previous papers so as to complete our elementary (but not too much!) theory in ...The purpose of this paper is to add some complements to the general theory of higher-order types of asymptotic variation developed in two previous papers so as to complete our elementary (but not too much!) theory in view of applications to the theory of finite asymptotic expansions in the real domain, the asymptotic study of ordinary differential equations and the like. The main results concern: 1) a detailed study of the types of asymptotic variation of an infinite series so extending the results known for the sole power series;2) the type of asymptotic variation of a Wronskian completing the many already-published results on the asymptotic behaviors of Wronskians;3) a comparison between the two main standard approaches to the concept of “type of asymptotic variation”: via an asymptotic differential equation or an asymptotic functional equation;4) a discussion about the simple concept of logarithmic variation making explicit and completing the results which, in the literature, are hidden in a quite-complicated general theory.展开更多
Motivated by a general theory of finite asymptotic expansions in the real domain for functions f of one real variable, a theory developed in a previous series of papers, we present a detailed survey on the classes of ...Motivated by a general theory of finite asymptotic expansions in the real domain for functions f of one real variable, a theory developed in a previous series of papers, we present a detailed survey on the classes of higher-order asymptotically-varying functions where “asymptotically” stands for one of the adverbs “regularly, smoothly, rapidly, exponentially”. For order 1 the theory of regularly-varying functions (with a minimum of regularity such as measurability) is well established and well developed whereas for higher orders involving differentiable functions we encounter different approaches in the literature not linked together, and the cases of rapid or exponential variation, even of order 1, are not systrematically treated. In this semi-expository paper we systematize much scattered matter concerning the pertinent theory of such classes of functions hopefully being of help to those who need these results for various applications. The present Part I contains the higher-order theory for regular, smooth and rapid variation.展开更多
In this second part, we thoroughly examine the types of higher-order asymptotic variation of a function obtained by all possible basic algebraic operations on higher-order varying functions. The pertinent proofs are s...In this second part, we thoroughly examine the types of higher-order asymptotic variation of a function obtained by all possible basic algebraic operations on higher-order varying functions. The pertinent proofs are somewhat demanding except when all the involved functions are regularly varying. Next, we give an exposition of three types of exponential variation with an exhaustive list of various asymptotic functional equations satisfied by these functions and detailed results concerning operations on them. Simple applications to integrals of a product and asymptotic behavior of sums are given. The paper concludes with applications of higher-order regular, rapid or exponential variation to asymptotic expansions for an expression of type f(x+r(x)).展开更多
Hermite interpolation is a very important tool in approximation theory and nu- merical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermit...Hermite interpolation is a very important tool in approximation theory and nu- merical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermite interpolant is unique for a prescribed data set, and hence lacks freedom for the choice of an interpolating curve, which is a crucial requirement in design environment. Even though there is a rather well developed fractal theory for Hermite interpolation that offers a large flexibility in the choice of interpolants, it also has the short- coming that the functions that can be well approximated are highly restricted to the class of self-affine functions. The primary objective of this paper is to suggest a gl-cubic Hermite in- terpolation scheme using a fractal methodology, namely, the coalescence hidden variable fractal interpolation, which works equally well for the approximation of a self-affine and non-self-affine data generating functions. The uniform error bound for the proposed fractal interpolant is established to demonstrate that the convergence properties are similar to that of the classical Hermite interpolant. For the Hermite interpolation problem, if the derivative values are not actually prescribed at the knots, then we assign these values so that the interpolant gains global G2-continuity. Consequently, the procedure culminates with the construction of cubic spline coalescence hidden variable fractal interpolants. Thus, the present article also provides an al- ternative to the construction of cubic spline coalescence hidden variable fractal interpolation functions through moments proposed by Chand and Kapoor [Fractals, 15(1) (2007), pp. 41-53].展开更多
This paper considers the upper orthant and extremal tail dependence indices for multivariate t-copula. Where, the multivariate t-copula is defined under a correlation structure. The explicit representations of the tai...This paper considers the upper orthant and extremal tail dependence indices for multivariate t-copula. Where, the multivariate t-copula is defined under a correlation structure. The explicit representations of the tail dependence parameters are deduced since the copula of continuous variables is invariant under strictly increasing transformation about the random variables, which are more simple than those obtained in previous research. Then, the local monotonicity of these indices about the correlation coefficient is discussed, and it is concluded that the upper extremal dependence index increases with the correlation coefficient, but the monotonicity of the upper orthant tail dependence index is complex. Some simulations are performed by the Monte Carlo method to verify the obtained results, which are found to be satisfactory. Meanwhile, it is concluded that the obtained conclusions can be extended to any distribution family in which the generating random variable has a regularly varying distribution.展开更多
文摘Here we complete our work on the asymptotics of Hankel determinants studying the case wherein the entries are “ultrarapidly”-varying functions in the sense that their logarithms are rapidly varying. Moreover, the last results in the paper highlight analogies between algebraic identities for Hankelians with special entries and asymptotic relations valid for large classes of entries.
文摘The rich literature concerning “asymptotic behavior of Hankel determinants” concerns the behavior, as the order n tends to ∞, of Hankel determinants whose entries are numbers, e.g., with a combinatorial interest or arising as values of special classes of functions. Such determinants are numbers depending on n, playing roles in number theory, combinatorics, random matrices and the like;and mathematicians in the involved fields have been interested in their asymptotic behaviors as n goes to ∞, as previously mentioned, with no single exception to the author’s knowledge. The study carried on in the present paper treats an altogether different situation as suggested by the specification in the title “as the variable tends to +∞”. We deal with those types of Hankel determinants (purposely called Hankelians) which are special cases of Wronskians and, continuing our work on the asymptotics of Wronskians, we study the asymptotic behaviors of n-order Hankelians, whose entries involve either regularly- or rapidly-varying functions, when the variable tends to +∞. As in the study of Wronskians, the treatment of this case also needs the whole apparatus of the theory of higher-order types of asymptotic variation, but the most demanding results are not automatic corollaries of the general theory. In fact, in the study of generic Wronskians (study motivated by applications to asymptotic expansions), the entries were required to belong to one of the classes of “higher-order regular or rapid variation”;on the contrary, in the case of Hankelians, we are confronted with functions whose logarithms are either “regularly- or rapidly-varying functions”, roughly classifiable as “ultrarapidly-varying functions”, and the study requires both special devices and a number of preliminary lemmas about products and linear combinations of functions in the mentioned classes.
基金Natural Science Foundation of China under Grant No.51808376
文摘This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Based on material deterioration mechanisms and incremental dynamic analysis, the time-evolving seismic demands of components were obtained in the form of marginal probability distributions. The time-varying dependences among bridge components were then captured with the best fitting copula function, which was selected from the commonly used copula classes by the empirical distribution based analysis method. The system time-variant fragility curves at different damage states were developed and the effects of time-varying dependences among components on the bridge system fragility were investigated. The results indicate the time-varying dependence among components significantly affects the time-variant fragility of the bridge system. The copula technique captures the nonlinear dependence among component seismic demands accurately and easily by separating the marginal distributions and the dependence among them.
文摘The purpose of this paper is to add some complements to the general theory of higher-order types of asymptotic variation developed in two previous papers so as to complete our elementary (but not too much!) theory in view of applications to the theory of finite asymptotic expansions in the real domain, the asymptotic study of ordinary differential equations and the like. The main results concern: 1) a detailed study of the types of asymptotic variation of an infinite series so extending the results known for the sole power series;2) the type of asymptotic variation of a Wronskian completing the many already-published results on the asymptotic behaviors of Wronskians;3) a comparison between the two main standard approaches to the concept of “type of asymptotic variation”: via an asymptotic differential equation or an asymptotic functional equation;4) a discussion about the simple concept of logarithmic variation making explicit and completing the results which, in the literature, are hidden in a quite-complicated general theory.
文摘Motivated by a general theory of finite asymptotic expansions in the real domain for functions f of one real variable, a theory developed in a previous series of papers, we present a detailed survey on the classes of higher-order asymptotically-varying functions where “asymptotically” stands for one of the adverbs “regularly, smoothly, rapidly, exponentially”. For order 1 the theory of regularly-varying functions (with a minimum of regularity such as measurability) is well established and well developed whereas for higher orders involving differentiable functions we encounter different approaches in the literature not linked together, and the cases of rapid or exponential variation, even of order 1, are not systrematically treated. In this semi-expository paper we systematize much scattered matter concerning the pertinent theory of such classes of functions hopefully being of help to those who need these results for various applications. The present Part I contains the higher-order theory for regular, smooth and rapid variation.
文摘In this second part, we thoroughly examine the types of higher-order asymptotic variation of a function obtained by all possible basic algebraic operations on higher-order varying functions. The pertinent proofs are somewhat demanding except when all the involved functions are regularly varying. Next, we give an exposition of three types of exponential variation with an exhaustive list of various asymptotic functional equations satisfied by these functions and detailed results concerning operations on them. Simple applications to integrals of a product and asymptotic behavior of sums are given. The paper concludes with applications of higher-order regular, rapid or exponential variation to asymptotic expansions for an expression of type f(x+r(x)).
基金partially supported by the CSIR India(Grant No.09/084(0531)/2010-EMR-I)the SERC,DST India(Project No.SR/S4/MS:694/10)
文摘Hermite interpolation is a very important tool in approximation theory and nu- merical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermite interpolant is unique for a prescribed data set, and hence lacks freedom for the choice of an interpolating curve, which is a crucial requirement in design environment. Even though there is a rather well developed fractal theory for Hermite interpolation that offers a large flexibility in the choice of interpolants, it also has the short- coming that the functions that can be well approximated are highly restricted to the class of self-affine functions. The primary objective of this paper is to suggest a gl-cubic Hermite in- terpolation scheme using a fractal methodology, namely, the coalescence hidden variable fractal interpolation, which works equally well for the approximation of a self-affine and non-self-affine data generating functions. The uniform error bound for the proposed fractal interpolant is established to demonstrate that the convergence properties are similar to that of the classical Hermite interpolant. For the Hermite interpolation problem, if the derivative values are not actually prescribed at the knots, then we assign these values so that the interpolant gains global G2-continuity. Consequently, the procedure culminates with the construction of cubic spline coalescence hidden variable fractal interpolants. Thus, the present article also provides an al- ternative to the construction of cubic spline coalescence hidden variable fractal interpolation functions through moments proposed by Chand and Kapoor [Fractals, 15(1) (2007), pp. 41-53].
基金The National Natural Science Foundation of China(No.11001052,11171065)the National Science Foundation of Jiangsu Province(No.BK2011058)the Science Foundation of Nanjing University of Posts and Telecommunications(No.JG00710JX57)
文摘This paper considers the upper orthant and extremal tail dependence indices for multivariate t-copula. Where, the multivariate t-copula is defined under a correlation structure. The explicit representations of the tail dependence parameters are deduced since the copula of continuous variables is invariant under strictly increasing transformation about the random variables, which are more simple than those obtained in previous research. Then, the local monotonicity of these indices about the correlation coefficient is discussed, and it is concluded that the upper extremal dependence index increases with the correlation coefficient, but the monotonicity of the upper orthant tail dependence index is complex. Some simulations are performed by the Monte Carlo method to verify the obtained results, which are found to be satisfactory. Meanwhile, it is concluded that the obtained conclusions can be extended to any distribution family in which the generating random variable has a regularly varying distribution.