Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and af...Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.展开更多
Secondary pollutant ozone (O3) formation in a particular area is often influenced by various factors. Source of emissions is one of the factors. In south east Texas, Houston-Galveston-Brazoria (HGB) is a marginal non-...Secondary pollutant ozone (O3) formation in a particular area is often influenced by various factors. Source of emissions is one of the factors. In south east Texas, Houston-Galveston-Brazoria (HGB) is a marginal non-attainment area for ozone (O3). A summer episode of May 28 to July 2, 2006 is simulated using Comprehensive Air Quality Model with extensions (CAMx). During this period O3 concentration in HGB often exceeds the National Ambient Air Quality Standards (NAAQS) 0.075 ppm of average 8 hour O3 concentration. HGB area has numerous point sources. Various studies found that some specific volatile organic compounds are very reactive in atmosphere. The objective of this study is to analyze the influence of volatile organic compounds present in point source emissions on the air quality of HGB area. For this purpose ozone sensitivity for HGB area is analyzed by the ratio of hydrogen peroxides (H2O2) to nitric acid (HNO3). HGB area is found NOx limited but reactive VOCs are found to be influential too. From (1-4 June, 2006) maximum O3 concentration was found on weekend, June 3. VOCs such as Acetaldehyde (ALD2), Formaldehyde (FORM) and Alkane (ETHA) showed good correlation with O3 concentrations on that day. In addition, Peroxyacetyl nitrate (PAN) formation was found correlated to higher ozone production. Criteria pollutant Sulfur dioxide (SO2) was found to influence the ALD2 and ETHA concentrations, and thus indirectly influenced O3 production.展开更多
Since the first discovery of gold deposits on the northeastern margin of the Jiaolai Basin in Shandong Province at the end of the 20^(th) century,seven medium-sized to large/super-large gold deposits have been identif...Since the first discovery of gold deposits on the northeastern margin of the Jiaolai Basin in Shandong Province at the end of the 20^(th) century,seven medium-sized to large/super-large gold deposits have been identified in this region,with cumulative proven gold resources of 223 t.This study reviewed the metallogenic and geochemical characteristics of various gold deposits in this region,examined the sources of their ore-forming fluids and materials,as well as their gold metallogenic epochs and processes,and developed a gold metallogenic model.The gold deposits in this region are governed by both dense fractures and detachment structural systems along basin margins,primarily categorized into the altered rock type and the pyrite-bearing carbonate vein type.The latter type,a recently discovered mineralization type in the Jiaodong Peninsula,enjoys high gold grade,a large scale,and high gold mineral fineness,suggesting considerable prospecting potential.Both types of gold deposits show metallogenic epochs ranging from 116 Ma to 119 Ma.Their ore-forming fluids are identified as a CO_(2)-NaCl-H_(2)O fluid system characterized by moderate to low temperatures,moderate to low salinity,and low density,with the pyrite-bearing carbonate vein-type gold deposits manifesting slightly higher salinity.The C-H-O,S,and Pb isotopes of hydrothermal minerals reveal that the ore-forming fluids and materials are characteristic of crust-mantle mixing.Specifically,they were derived from mantle fluids in the early stages,mixed with stratum water and meteoric water in the later stages for mineralization.The gold metallogenic process is identified as follows:During the Early Cretaceous,the subduction of the Pacific Plate and the destruction of the North China Craton led to asthenospheric upwelling.The resulting fluids,after metasomatizing the enriched mantle,differentiated and evolved into C-H-O ore-bearing fluids,which were then mixed with crustal fluids.The mixed fluids migrated to the shallow crust,where they mingled with stratum water and meteoric water.Then,the fluids underwent unloading and final mineralization in detachment fault tectonic systems on basin margins.Due to differences in mixed crustal materials or the surrounding rocks involved in water-rock interactions,altered rock-and pyrite-bearing carbonate vein-type gold deposits were formed in acidic and alkaline fluid environments,respectively.展开更多
This study investigates the distinct impacts of eastern Pacific(EP)and central Pacific(CP)El Niño events on winter shortwave solar radiation(SSR)in southern China,revealing different spatial distributions and und...This study investigates the distinct impacts of eastern Pacific(EP)and central Pacific(CP)El Niño events on winter shortwave solar radiation(SSR)in southern China,revealing different spatial distributions and underlying mechanisms.The results show that,during the developing winter of EP El Niño,significant SSR reductions occur in southwestern China and the east coast of southern China due to a strong,zonally extended Northwest Pacific anticyclone that transports moisture from the tropical Northwest Pacific and North Indian Ocean,while the northeast of southern China experiences a weak increase in SSR.In contrast,during the developing winter of CP El Niño,SSR decreases in the east of southern China with a significant decrease in the lower basin of the Yangtze River but an increase in the west of southern China with a remarkable increase in eastern Yunnan.The pronounced east-west dipole pattern in SSR anomalies is driven by a meridionally elongated Northwest Pacific anticyclone,which enhances northward moisture transport to the east of southern China while leaving western areas drier.Further research reveals that distinct moisture anomalies during the developing winter of EP and CP events result in divergent SSR distributions across southern China,primarily through modulating the total cloud cover.These findings highlight the critical need to differentiate between El Niño types when predicting medium and long-term variability of radiation in southern China.展开更多
Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the o...Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the occurrence of Be in BCS is unclear,which seriously hinders the development of pollution control technologies.In order to enhance the understanding of BCS,the occurrence of Be and the microscale interactions with coexisting phases were investigated for the first time.It was found that CaSO_(4)·2H_(2)O and amorphous SiO_(2) are the primary phases of BCS.The simulated experiments of purified materials showed that Be interacted with CaSO_(4)·2H_(2)O and amorphous SiO_(2).Be can enter into the lattice of CaSO_(4)·2H_(2)O mainly as free Be2+.Amorphous SiO_(2) can adsorb Be2+particularly at a pH range of 3–5.The dissolution behavior experiment of BCS shows that about 52%of the Be is readily extracted under acidic conditions,which refers to the Be of independent occurrence.In contrast,the remaining 48%of Be can be extracted only after the CaSO_(4)·2H_(2)O has completely dissolved.Hence,CaSO_(4)·2H_(2)O is identified as the key occurrence phase which determines the highly efficient dissolution of Be.As a result,this study enhances the understanding of BCS and lays the foundation for the development of Be separation technologies.展开更多
Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding str...Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.展开更多
Protonic ceramic fuel cells(PCFCs)have been recognized as promising power generation devices for future clean energy systems,owing to their relatively low activation energy for proton migration and high energy convers...Protonic ceramic fuel cells(PCFCs)have been recognized as promising power generation devices for future clean energy systems,owing to their relatively low activation energy for proton migration and high energy conversion efficiency.In certain application scenarios,the use of N_(2)O(a potent greenhouse gas),as an alternative oxidant to air,presents a feasible strategy.Herein,we report for the first time the operation of PCFCs employing N_(2)O as the oxidant.A hybrid Pr_(2)Ni_(0.6)Co_(0.4)O_(4-δ)(PNCO-214)catalyst is developed,comprising Ruddlesden-Popper(R-P)structured Pr_(4)Ni_(1.8)Co_(1.2)O_(10-δ)(PNCO-4310)and fluorite structured Pr_(6)O_(11)(PO-611),which synergistically exhibits exceptional catalytic activity toward both N_(2)O decomposition and the oxygen reduction reaction,achieving a conversion over 92% and an area specific resistance of 1.301Ω·cm^(2) at 600℃.Quasi-insitu temperature-dependent Fourier transform infrared(FTIR)and electrochemical impedance spectroscopy analyses reveal that abundant oxygen vacancies in PNCO-214 facilitate rapid adsorption and dissociation of N_(2)O into N_(2) and O_(2),while also promoting the surface exchange kinetics of proton/oxygen during oxygen reduction reaction(ORR).When applied in an anode-supported single cell with PNCO-214 cathode operating under N_(2)O,outstanding power density and low resistance are achieved,delivering 0.801 W·cm^(-2) and 0.245Ω·cm^(2) at 600℃.Satisfactory performance is also maintained even when the temperature is reduced to 500℃.Furthermore,the single cell demonstrates relatively good stability with negligible degradation over 130 h at 600℃ and 0.7 V.These findings underscore the potential of PNCO-214 as a highly effective cathode catalyst for enabling the use of N_(2)O as a viable oxidant in PCFCs for specific industrial applications.展开更多
The present work evaluates the feasibility of using the raw material collected from discarded zinc-carbon batteries as heterogeneous catalyst to degrade the dye Indigo Carmine in an aqueous solution. Besides the evide...The present work evaluates the feasibility of using the raw material collected from discarded zinc-carbon batteries as heterogeneous catalyst to degrade the dye Indigo Carmine in an aqueous solution. Besides the evident environmental application, this work also presents an economic alternative for the production of new catalysts used to remediate polluted waters. For this, discarded carbon-zinc batteries were gathered, disassembled and their anodic paste collected. After acidic treatment and calcination at 500°C, characterization measurements, i.e. flame atomic absorption spectroscopy (FAAS), nitrogen sorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM), revealed that the so-obtained material consisted mainly of ZnMn2O4. This material acts as a heterogeneous catalyst in a Fenton-like process that degrades the dye Indigo Carmine in water. That is probably due to the presence of Mn(III) (manganese in the +3 oxidation state) in this material that triggers the decomposition of hydrogen peroxide (H2O2) to yield hydroxyl radicals (HO·). Moreover, direct infusion electrospray ionization coupled to high resolution mass spectrometry (ESI-HRMS) was employed to characterize the main by-products resulting from such degradation process. These initial results thus indicate that raw materials from waste batteries can therefore be potentially employed as efficient Fenton-like catalysts to degrade organic pollutants in an aqueous solution.展开更多
Cardiovascular disease, nervous system disorders, and cancer in association with other diseases such as diabetes mellitus result in greater than sixty percent of the global annual deaths. These noncommunicable disease...Cardiovascular disease, nervous system disorders, and cancer in association with other diseases such as diabetes mellitus result in greater than sixty percent of the global annual deaths. These noncommunicable diseases also affect at least one-third of the population in low and middle-income countries and lead to hypertension, elevated cholesterol, malignancy, and neurodegenerative disorders such as Alzheimer's disease and stroke. With the climbing lifespan of the world's population, increased prevalence of these disorders is expected requiring the development of new therapeutic strategies against these disabling disease entities. Targeting stem cellproliferation for cardiac disease, vascular disorders, cancer, and neurodegenerative disorders is receiving great enthusiasm, especially those that focus upon SIRT1, a mammalian homologue of the yeast silent information regulator-2. Modulation of the cellular activity of SIRT1 can involve oversight by nicotinamide/nicotinic acid mononucleotide adenylyltransferase, mammalian forkhead transcription factors, mechanistic of rapamycin pathways, and cysteine-rich protein 61, connective tissue growth factor, and nephroblastoma over-expressed gene family members that can impact cytoprotective outcomes. Ultimately, the ability of SIRT1 to control the programmed cell death pathways of apoptosis and autophagy can determine not only cardiac, vascular, and neuronal stem cell development and longevity, but also the onset of tumorigenesis and the resistance against chemotherapy. SIRT1 therefore has a critical role and holds exciting prospects for new therapeutic strategies that can offer reparative processes for cardiac, vascular, and nervous system degenerative disorders as well as targeted control of aberrant cell growth during cancer.展开更多
Di-calcium magnesium silicate(Ca_(2)MgSi_(2)O_(7))doped with various concentrations(1.0 mol%,2.0 mol%,2.5 mol%,and 3.0 mol%)of dysprosium(Ⅲ)was prepared using a high-temperature technique named as solid state reactio...Di-calcium magnesium silicate(Ca_(2)MgSi_(2)O_(7))doped with various concentrations(1.0 mol%,2.0 mol%,2.5 mol%,and 3.0 mol%)of dysprosium(Ⅲ)was prepared using a high-temperature technique named as solid state reaction method.The sample with 2.5 mol%of dysprosium(Ⅲ)underwent X-ray diffraction(XRD)characterization to confirm the proper phase formation in the sample.Observed XRD pattern matched significantly with crystallographic open database(Card No.96-210-6180)with a significantly high figure of merit(0.84).Photoluminescence(PL)excitation and emission spectra were also recorded.PL excitation spectrum of Ca_(2)MgSi_(2)O_(7)doped with 2.5 mol%of dysprosium(Ⅲ)exhibited a most prominent peak at 395 nm,therefore,the emission spectra of the samples were monitored at 395 nm excitation.The emission spectra exhibited prominent peaks centered at 483 nm(blue),577 nm(yellow),and 664 nm(orange red)due to the transitions ^(4)F_(9/2)→^(6)H_(15/2),^(4)F_(9/2)→^(6)H_(13/2),and ^(4)F_(9/2)→^(6)H_(11/2),respectively.The Commission Internationale de L’Eclairage(CIE)of this emission spectra was found at(0.304,0.340)which lies in the white light region.Keeping the objective to evaluate the emitted white light for its suitability in light-emitting diode(LED)application,color rendering index(CRI)and color correlated temperature(CCT)were also calculated.Radiation life time was estimated using Judd-Ofelt analysis.展开更多
Reactive oxygen species(ROS),including singlet oxygen(^(1)O_(2)),hydroxyl radicals(·OH),and superoxide anions(O_(2)^(·-)),are highly reactive molecules that play central roles in many chemical,biological,and...Reactive oxygen species(ROS),including singlet oxygen(^(1)O_(2)),hydroxyl radicals(·OH),and superoxide anions(O_(2)^(·-)),are highly reactive molecules that play central roles in many chemical,biological,and environmental processes due to their strong oxidative power[1].Generating ROS in a controlled manner under mild conditions is essential for achieving selective oxidation reactions.Light-driven methods are especially appealing for this purpose,as they offer precise control over where and when ROS are produced.展开更多
Pesticides provide the primary means for controlling organisms that compete with man for food and fibre or cause injury to man, livestock and crops. They played a vital role in the economic production of wide ranges o...Pesticides provide the primary means for controlling organisms that compete with man for food and fibre or cause injury to man, livestock and crops. They played a vital role in the economic production of wide ranges of vegetable, fruit, cereal, forage, fibre and oil crops which now constitute a large part of successful agricultural industry in many countries. After application to the target areas, pesticide residues are removed from applicators by rinsing with water which results in the formation of a toxic wastewater that represents a disposal problem for many farmers. Pesticides can adversely affect people, pets, livestock and wildlife in addition to the pests they are intended to destroy. The phenomenon of biomagnification of some pesticides has resulted in reproductive failure of some fish species and egg shell thinning of birds such as peregrine falcons, sparrow hawk and eagle owls. Pesticide toxicity to humans include skin and eye irritation and skin cancer. Therefore, care must be exercised in the application, disposal and treatment of pesticides. Currently, disposal of pesticide wastewater is carried out by: 1) land cultivation, 2) dumping in soil pits, plastic pits and concrete pits or on land and in extreme cases in streams near the rinsing operation, 3) use of evaporation beds and 4) land filling. These methods of disposal are unsafe as the surface run off will reach streams, rivers and lakes and the infiltration of the wastewater into the local soil will eventually reach ground water. The treatment methods currently used for pesticide wastewater include: 1) incineration (incinerators and open burning), 2) chemical treatments (O3/UV, hydrolysis, Fenton oxidation and KPEG), 3) physical treatments (inorganic, organic absorbents and activated carbon) and 4) biological treatments (composting, bioaugmentation and phytoremediation). Therefore, the choice of safe, on farm disposal techniques for agricultural pesticides is very important. A comparative analysis was performed on 18 methods of pesticide disposal/treatment using six criteria: containment, detoxification ability, cost, time, suitability for on farm use, size and evaporation efficiency. The results indicated that of the 18 methods evaluated, 9 scored above 80/100 and can be used on farm. They were organic absorbents (97), composting (94), bioaugmentation (92), inorganic absorbents (90), Fenton oxidation (86), O3/UV (83), activated carbon (82), hydrolysis (82), and land cultivation (80). The other methods are not suitable for on farm use as they suffered from containment problems, high cost and variability of effectiveness.展开更多
LiCoO2 gradient coated LiNi0.96Co0.04O2 material and iso-structure LiNi0.8Co0.2O2 material (the same molar ratio 8/2 of Ni/Co in the two materials) as cathode for lithium-ion batteries were synthesized with a co-preci...LiCoO2 gradient coated LiNi0.96Co0.04O2 material and iso-structure LiNi0.8Co0.2O2 material (the same molar ratio 8/2 of Ni/Co in the two materials) as cathode for lithium-ion batteries were synthesized with a co-precipitation method. Microstructure of iso-structure LiNi0.8Co0.2O2 were about the same as that of LiNiO2, and the structure of the coated material was much more similar to that of LiCoO2 based on the X-ray diffraction patterns. The cycling voltammetry and galvanostatic cycle tests show that the properties of the coated material were improved significantly. The first specific charge and discharge capacity for the coated material was 249.20 mAh·g-1 and 207.90 mAh·g-1 respectively, and the specific discharge capacity for the 100th cycle was still 186.02 mAh·g-1 with an irreversible loss of only 21.1 mAh·g-1. This showed that the new material had a good lithium intercalation-deintrercalation performance. Meanwhile, the mechanism of the sintering reaction was proposed. During the sintering reaction of the precursor with LiOH, the Li+-ion permeated into the body of precursors because the shape of the precursor particles was not changed basically based on scanning electronic microscopy. So, the layer microstructure of the precursor is important for the layer microstructure of lithium nickel cobalt oxides electrode material.展开更多
A series of solid solutions with high content of Tb_(2)O_(3)-(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.667-0.830)are synthesized in the Tb_(2)O_(3)-TiO_(2)system via co-precipitation and/or mechanical activation.This is followed ...A series of solid solutions with high content of Tb_(2)O_(3)-(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.667-0.830)are synthesized in the Tb_(2)O_(3)-TiO_(2)system via co-precipitation and/or mechanical activation.This is followed by high-temperature annealing for 4-22 h.The X-ray diffrac-tion method showed that the fluorite structure was realized for(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.75-0.817).The solid solution Tb_(3.12)Ti_(0.88)O_(6.44)(64mol%Tb_(2)O_(3)(x=0.78))with a fluorite structure exhibited a maximum hole conductivity of~22 S/cm at 600℃.To separate the ionic component of the conductivity in the electronic conductor Tb_(3.12)Ti_(0.88)O_(6.44),its high entropy analogue,(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44),was synthesized in which all rare-earth elements(REE)cations exhibited valency of+3.Consequently,the contribution of ionic(proton)conductivity(~7×10^(−6)S/cm at 600℃)was revealed with respect to the background of dominant hole conductivity.The proton conduct-ivity of high-entropy oxide(HEО)(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44)was confirmed by the detection of the isotope effect,where the mobility of the heavier O-D ions was lower than that of the O-H hydroxyls,resulting in lower conductivity in D_(2)O vapors when com-pared to H_(2)O.展开更多
Astragaloside Ⅳ is the main active compound of Astragalus membranaceus. Astragaloside Ⅳ has strong anti-oxidative activities and protective effects against progression of peripheral neuropathy. In this study, we det...Astragaloside Ⅳ is the main active compound of Astragalus membranaceus. Astragaloside Ⅳ has strong anti-oxidative activities and protective effects against progression of peripheral neuropathy. In this study, we determined whether astragaloside Ⅳ protects retinal ganglion cells(RGC) from oxidative stress injury using the rat RGC-5 cell line. Hydrogen peroxide(H_2O_2) was used to induce oxidative stress injury, with the protective effect of astragaloside Ⅳ examined. Cell Counting Kit-8 and 4′,6-diamidino-2-phenylindole staining showed that astragaloside Ⅳ increased cell survival rate and decreased apoptotic cell number. Flow cytometry showed that astragaloside Ⅳ decreased H_2O_2-induced reactive oxygen species levels. While laser confocal microscopy showed that astragaloside Ⅳ inhibited the H_2O_2-induced decrease of mitochondrial membrane potential. Western blot assay showed that astragaloside Ⅳ reduced cytochrome c release induced by H_2O_2, inhibited Bax and caspase-3 expression, and increased Bcl-2 expression. Altogether, these results indicate that astragaloside Ⅳ has potential protective effects against H_2O_2-induced oxidative stress in retinal ganglion cells.展开更多
Mesoporous CuFe2O4 solid solution nanopowders with high specific surface areas were synthesized by a novel, very simple and inexpensive sol-gel route using propylene oxide as gelation agent, and used as the catalyst i...Mesoporous CuFe2O4 solid solution nanopowders with high specific surface areas were synthesized by a novel, very simple and inexpensive sol-gel route using propylene oxide as gelation agent, and used as the catalyst in low temperature CO oxidation. The samples were characterized by X-ray diffraction, N2 adsorption-desorption, thermogravimetric/differential thermal analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and temperature-programmed reduction. The results revealed that the samples have a nanocrystalline structure with crystals in the range of 10 to 25 nm, and that all the catalysts have mesoporous pores. The addition of Cu into iron oxide affected its structural and catalytic properties. The sample containing 15 mol% Cu showed the highest specific surface area and catalytic activity, and showed high catalytic stability in low temperature CO oxidation.展开更多
Our previous study showed an association between advanced glycation end products (AGEs) and neural tube defects (NTDs). To understand the molecular mechanisms underlying the effect of AGEs on neural tube developme...Our previous study showed an association between advanced glycation end products (AGEs) and neural tube defects (NTDs). To understand the molecular mechanisms underlying the effect of AGEs on neural tube development, C57BL/6 female mice were fed for 4 weeks with com- mercial food containing 3% advanced glycation end product bovine serum albumin (AGE-BSA) or 3% bovine serum albumin (BSA) as a control. After mating mice, oxidative stress markers including malondialdehyde and H202 were measured at embryonic day 7.5 (E7.5) of ges- tation, and the level of intracellular reactive oxygen species (ROS) in embryonic cells was determined at E8.5. In addition to evaluating NTDs, an enzyme-linked immunosorbent assay was used to determine the effect of embryonic protein administration on the N-(carboxymethyl) lysine reactivity of acid and carboxyethyl lysine antibodies at E10.5. The results showed a remarkable increase in the incidence of NTDs at El0.5 in embryos of mice fed with AGE-BSA (no hyperglycemia) compared with control mice. Moreover, embryonic protein administration resulted in a noticeable increase in the reactivity of N-(carboxymethyl) lysine and N(ε)-(carboxyethyl) lysine antibodies. Malondialdehyde and H2O2 levels in embryonic cells were increased at E7.5, followed by increased intracellular ROS levels at E8.5. Vitamin E supplementation could partially recover these phenomena. Collectively, these results suggest that AGE-BSA could induce NTDs in the absence of hyperglycemia by an underlying mechanism that is at least partially associated with its capacity to increase embryonic oxidative stress levels.展开更多
Non-O1/non-O139 Vibrio cholerae(NOVC)has multiple pathogenic pathways in humans.The cause of disease in influenced by the virulence genes carried by the infecting strain and the health condition of the host.[1-2]When ...Non-O1/non-O139 Vibrio cholerae(NOVC)has multiple pathogenic pathways in humans.The cause of disease in influenced by the virulence genes carried by the infecting strain and the health condition of the host.[1-2]When seafood,food and water sources are contaminated with feces,people are prone to gastroenteritis,and direct exposure to contaminated water may cause wound infection.展开更多
基金supported by American Diabetes Association,American Heart Association,NIH NIEHS,NIH NIA,NIH NINDS,and NIH ARRA
文摘Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.
文摘Secondary pollutant ozone (O3) formation in a particular area is often influenced by various factors. Source of emissions is one of the factors. In south east Texas, Houston-Galveston-Brazoria (HGB) is a marginal non-attainment area for ozone (O3). A summer episode of May 28 to July 2, 2006 is simulated using Comprehensive Air Quality Model with extensions (CAMx). During this period O3 concentration in HGB often exceeds the National Ambient Air Quality Standards (NAAQS) 0.075 ppm of average 8 hour O3 concentration. HGB area has numerous point sources. Various studies found that some specific volatile organic compounds are very reactive in atmosphere. The objective of this study is to analyze the influence of volatile organic compounds present in point source emissions on the air quality of HGB area. For this purpose ozone sensitivity for HGB area is analyzed by the ratio of hydrogen peroxides (H2O2) to nitric acid (HNO3). HGB area is found NOx limited but reactive VOCs are found to be influential too. From (1-4 June, 2006) maximum O3 concentration was found on weekend, June 3. VOCs such as Acetaldehyde (ALD2), Formaldehyde (FORM) and Alkane (ETHA) showed good correlation with O3 concentrations on that day. In addition, Peroxyacetyl nitrate (PAN) formation was found correlated to higher ozone production. Criteria pollutant Sulfur dioxide (SO2) was found to influence the ALD2 and ETHA concentrations, and thus indirectly influenced O3 production.
基金supported by the Program of the National Natural Science Foundation of China(Nos.41973048,U2006201)the Open Project of State Key Laboratory of Geological Processes and Mineral Resources(No.GPMR202203)+1 种基金the Key R&D Program of Shandong Province(No.2023CXGC011001),the Taishan Scholars.Program(tstp20240847)the Open Project of Shandong Engineering Research Center of Application and Development of Big Data for Deep Gold Exploration(No.SDK202207)。
文摘Since the first discovery of gold deposits on the northeastern margin of the Jiaolai Basin in Shandong Province at the end of the 20^(th) century,seven medium-sized to large/super-large gold deposits have been identified in this region,with cumulative proven gold resources of 223 t.This study reviewed the metallogenic and geochemical characteristics of various gold deposits in this region,examined the sources of their ore-forming fluids and materials,as well as their gold metallogenic epochs and processes,and developed a gold metallogenic model.The gold deposits in this region are governed by both dense fractures and detachment structural systems along basin margins,primarily categorized into the altered rock type and the pyrite-bearing carbonate vein type.The latter type,a recently discovered mineralization type in the Jiaodong Peninsula,enjoys high gold grade,a large scale,and high gold mineral fineness,suggesting considerable prospecting potential.Both types of gold deposits show metallogenic epochs ranging from 116 Ma to 119 Ma.Their ore-forming fluids are identified as a CO_(2)-NaCl-H_(2)O fluid system characterized by moderate to low temperatures,moderate to low salinity,and low density,with the pyrite-bearing carbonate vein-type gold deposits manifesting slightly higher salinity.The C-H-O,S,and Pb isotopes of hydrothermal minerals reveal that the ore-forming fluids and materials are characteristic of crust-mantle mixing.Specifically,they were derived from mantle fluids in the early stages,mixed with stratum water and meteoric water in the later stages for mineralization.The gold metallogenic process is identified as follows:During the Early Cretaceous,the subduction of the Pacific Plate and the destruction of the North China Craton led to asthenospheric upwelling.The resulting fluids,after metasomatizing the enriched mantle,differentiated and evolved into C-H-O ore-bearing fluids,which were then mixed with crustal fluids.The mixed fluids migrated to the shallow crust,where they mingled with stratum water and meteoric water.Then,the fluids underwent unloading and final mineralization in detachment fault tectonic systems on basin margins.Due to differences in mixed crustal materials or the surrounding rocks involved in water-rock interactions,altered rock-and pyrite-bearing carbonate vein-type gold deposits were formed in acidic and alkaline fluid environments,respectively.
基金funded by a Project from China Southern Power Grid Company Ltd.(Nos.ZBKJXM20232481 and ZBKJXM20232482)。
文摘This study investigates the distinct impacts of eastern Pacific(EP)and central Pacific(CP)El Niño events on winter shortwave solar radiation(SSR)in southern China,revealing different spatial distributions and underlying mechanisms.The results show that,during the developing winter of EP El Niño,significant SSR reductions occur in southwestern China and the east coast of southern China due to a strong,zonally extended Northwest Pacific anticyclone that transports moisture from the tropical Northwest Pacific and North Indian Ocean,while the northeast of southern China experiences a weak increase in SSR.In contrast,during the developing winter of CP El Niño,SSR decreases in the east of southern China with a significant decrease in the lower basin of the Yangtze River but an increase in the west of southern China with a remarkable increase in eastern Yunnan.The pronounced east-west dipole pattern in SSR anomalies is driven by a meridionally elongated Northwest Pacific anticyclone,which enhances northward moisture transport to the east of southern China while leaving western areas drier.Further research reveals that distinct moisture anomalies during the developing winter of EP and CP events result in divergent SSR distributions across southern China,primarily through modulating the total cloud cover.These findings highlight the critical need to differentiate between El Niño types when predicting medium and long-term variability of radiation in southern China.
基金supported by the National Natural Science Foundation of China(No.22276219)the foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52121004)+1 种基金the major program Natural Science Foundation of Hunan Province of China(No.2021JC0001)the Fundamental Research Funds for the Central Universities of Central South University(No.2024ZZTS0063).
文摘Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the occurrence of Be in BCS is unclear,which seriously hinders the development of pollution control technologies.In order to enhance the understanding of BCS,the occurrence of Be and the microscale interactions with coexisting phases were investigated for the first time.It was found that CaSO_(4)·2H_(2)O and amorphous SiO_(2) are the primary phases of BCS.The simulated experiments of purified materials showed that Be interacted with CaSO_(4)·2H_(2)O and amorphous SiO_(2).Be can enter into the lattice of CaSO_(4)·2H_(2)O mainly as free Be2+.Amorphous SiO_(2) can adsorb Be2+particularly at a pH range of 3–5.The dissolution behavior experiment of BCS shows that about 52%of the Be is readily extracted under acidic conditions,which refers to the Be of independent occurrence.In contrast,the remaining 48%of Be can be extracted only after the CaSO_(4)·2H_(2)O has completely dissolved.Hence,CaSO_(4)·2H_(2)O is identified as the key occurrence phase which determines the highly efficient dissolution of Be.As a result,this study enhances the understanding of BCS and lays the foundation for the development of Be separation technologies.
基金supported by the National Key R&D Program of China (No. 2018YFA0707300)the National Natural Science Foundation of China (No. 52374376)the Introduction Plan for High end Foreign Experts, China (No. G2023105001L)。
文摘Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.
基金financially supported by the National Key R&D Program of China(No.2024YFF0506300)National Natural Science Foundation of China(No.52336009)+5 种基金Key Research and Development Program of Shaanxi(No.2024CY2-GJHX-66)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515010429)Natural Science Basic Research Plan in Shaanxi Province of China(No.2024JC-YBQN-0475)Xidian University Specially Funded Project for Interdisciplinary Exploration(No.TZJH2024063)the Fundamental Research Funds for the Central Universities(No.QTZX23061)the Innovation Center of Nuclear Power Technology(No.HDLCXZX-2022-ZH-013).
文摘Protonic ceramic fuel cells(PCFCs)have been recognized as promising power generation devices for future clean energy systems,owing to their relatively low activation energy for proton migration and high energy conversion efficiency.In certain application scenarios,the use of N_(2)O(a potent greenhouse gas),as an alternative oxidant to air,presents a feasible strategy.Herein,we report for the first time the operation of PCFCs employing N_(2)O as the oxidant.A hybrid Pr_(2)Ni_(0.6)Co_(0.4)O_(4-δ)(PNCO-214)catalyst is developed,comprising Ruddlesden-Popper(R-P)structured Pr_(4)Ni_(1.8)Co_(1.2)O_(10-δ)(PNCO-4310)and fluorite structured Pr_(6)O_(11)(PO-611),which synergistically exhibits exceptional catalytic activity toward both N_(2)O decomposition and the oxygen reduction reaction,achieving a conversion over 92% and an area specific resistance of 1.301Ω·cm^(2) at 600℃.Quasi-insitu temperature-dependent Fourier transform infrared(FTIR)and electrochemical impedance spectroscopy analyses reveal that abundant oxygen vacancies in PNCO-214 facilitate rapid adsorption and dissociation of N_(2)O into N_(2) and O_(2),while also promoting the surface exchange kinetics of proton/oxygen during oxygen reduction reaction(ORR).When applied in an anode-supported single cell with PNCO-214 cathode operating under N_(2)O,outstanding power density and low resistance are achieved,delivering 0.801 W·cm^(-2) and 0.245Ω·cm^(2) at 600℃.Satisfactory performance is also maintained even when the temperature is reduced to 500℃.Furthermore,the single cell demonstrates relatively good stability with negligible degradation over 130 h at 600℃ and 0.7 V.These findings underscore the potential of PNCO-214 as a highly effective cathode catalyst for enabling the use of N_(2)O as a viable oxidant in PCFCs for specific industrial applications.
文摘The present work evaluates the feasibility of using the raw material collected from discarded zinc-carbon batteries as heterogeneous catalyst to degrade the dye Indigo Carmine in an aqueous solution. Besides the evident environmental application, this work also presents an economic alternative for the production of new catalysts used to remediate polluted waters. For this, discarded carbon-zinc batteries were gathered, disassembled and their anodic paste collected. After acidic treatment and calcination at 500°C, characterization measurements, i.e. flame atomic absorption spectroscopy (FAAS), nitrogen sorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM), revealed that the so-obtained material consisted mainly of ZnMn2O4. This material acts as a heterogeneous catalyst in a Fenton-like process that degrades the dye Indigo Carmine in water. That is probably due to the presence of Mn(III) (manganese in the +3 oxidation state) in this material that triggers the decomposition of hydrogen peroxide (H2O2) to yield hydroxyl radicals (HO·). Moreover, direct infusion electrospray ionization coupled to high resolution mass spectrometry (ESI-HRMS) was employed to characterize the main by-products resulting from such degradation process. These initial results thus indicate that raw materials from waste batteries can therefore be potentially employed as efficient Fenton-like catalysts to degrade organic pollutants in an aqueous solution.
基金American Diabetes AssociationAmerican Heart Association+3 种基金NIH NIEHSNIH NIANIH NINDSNIH ARRA
文摘Cardiovascular disease, nervous system disorders, and cancer in association with other diseases such as diabetes mellitus result in greater than sixty percent of the global annual deaths. These noncommunicable diseases also affect at least one-third of the population in low and middle-income countries and lead to hypertension, elevated cholesterol, malignancy, and neurodegenerative disorders such as Alzheimer's disease and stroke. With the climbing lifespan of the world's population, increased prevalence of these disorders is expected requiring the development of new therapeutic strategies against these disabling disease entities. Targeting stem cellproliferation for cardiac disease, vascular disorders, cancer, and neurodegenerative disorders is receiving great enthusiasm, especially those that focus upon SIRT1, a mammalian homologue of the yeast silent information regulator-2. Modulation of the cellular activity of SIRT1 can involve oversight by nicotinamide/nicotinic acid mononucleotide adenylyltransferase, mammalian forkhead transcription factors, mechanistic of rapamycin pathways, and cysteine-rich protein 61, connective tissue growth factor, and nephroblastoma over-expressed gene family members that can impact cytoprotective outcomes. Ultimately, the ability of SIRT1 to control the programmed cell death pathways of apoptosis and autophagy can determine not only cardiac, vascular, and neuronal stem cell development and longevity, but also the onset of tumorigenesis and the resistance against chemotherapy. SIRT1 therefore has a critical role and holds exciting prospects for new therapeutic strategies that can offer reparative processes for cardiac, vascular, and nervous system degenerative disorders as well as targeted control of aberrant cell growth during cancer.
文摘Di-calcium magnesium silicate(Ca_(2)MgSi_(2)O_(7))doped with various concentrations(1.0 mol%,2.0 mol%,2.5 mol%,and 3.0 mol%)of dysprosium(Ⅲ)was prepared using a high-temperature technique named as solid state reaction method.The sample with 2.5 mol%of dysprosium(Ⅲ)underwent X-ray diffraction(XRD)characterization to confirm the proper phase formation in the sample.Observed XRD pattern matched significantly with crystallographic open database(Card No.96-210-6180)with a significantly high figure of merit(0.84).Photoluminescence(PL)excitation and emission spectra were also recorded.PL excitation spectrum of Ca_(2)MgSi_(2)O_(7)doped with 2.5 mol%of dysprosium(Ⅲ)exhibited a most prominent peak at 395 nm,therefore,the emission spectra of the samples were monitored at 395 nm excitation.The emission spectra exhibited prominent peaks centered at 483 nm(blue),577 nm(yellow),and 664 nm(orange red)due to the transitions ^(4)F_(9/2)→^(6)H_(15/2),^(4)F_(9/2)→^(6)H_(13/2),and ^(4)F_(9/2)→^(6)H_(11/2),respectively.The Commission Internationale de L’Eclairage(CIE)of this emission spectra was found at(0.304,0.340)which lies in the white light region.Keeping the objective to evaluate the emitted white light for its suitability in light-emitting diode(LED)application,color rendering index(CRI)and color correlated temperature(CCT)were also calculated.Radiation life time was estimated using Judd-Ofelt analysis.
文摘Reactive oxygen species(ROS),including singlet oxygen(^(1)O_(2)),hydroxyl radicals(·OH),and superoxide anions(O_(2)^(·-)),are highly reactive molecules that play central roles in many chemical,biological,and environmental processes due to their strong oxidative power[1].Generating ROS in a controlled manner under mild conditions is essential for achieving selective oxidation reactions.Light-driven methods are especially appealing for this purpose,as they offer precise control over where and when ROS are produced.
文摘Pesticides provide the primary means for controlling organisms that compete with man for food and fibre or cause injury to man, livestock and crops. They played a vital role in the economic production of wide ranges of vegetable, fruit, cereal, forage, fibre and oil crops which now constitute a large part of successful agricultural industry in many countries. After application to the target areas, pesticide residues are removed from applicators by rinsing with water which results in the formation of a toxic wastewater that represents a disposal problem for many farmers. Pesticides can adversely affect people, pets, livestock and wildlife in addition to the pests they are intended to destroy. The phenomenon of biomagnification of some pesticides has resulted in reproductive failure of some fish species and egg shell thinning of birds such as peregrine falcons, sparrow hawk and eagle owls. Pesticide toxicity to humans include skin and eye irritation and skin cancer. Therefore, care must be exercised in the application, disposal and treatment of pesticides. Currently, disposal of pesticide wastewater is carried out by: 1) land cultivation, 2) dumping in soil pits, plastic pits and concrete pits or on land and in extreme cases in streams near the rinsing operation, 3) use of evaporation beds and 4) land filling. These methods of disposal are unsafe as the surface run off will reach streams, rivers and lakes and the infiltration of the wastewater into the local soil will eventually reach ground water. The treatment methods currently used for pesticide wastewater include: 1) incineration (incinerators and open burning), 2) chemical treatments (O3/UV, hydrolysis, Fenton oxidation and KPEG), 3) physical treatments (inorganic, organic absorbents and activated carbon) and 4) biological treatments (composting, bioaugmentation and phytoremediation). Therefore, the choice of safe, on farm disposal techniques for agricultural pesticides is very important. A comparative analysis was performed on 18 methods of pesticide disposal/treatment using six criteria: containment, detoxification ability, cost, time, suitability for on farm use, size and evaporation efficiency. The results indicated that of the 18 methods evaluated, 9 scored above 80/100 and can be used on farm. They were organic absorbents (97), composting (94), bioaugmentation (92), inorganic absorbents (90), Fenton oxidation (86), O3/UV (83), activated carbon (82), hydrolysis (82), and land cultivation (80). The other methods are not suitable for on farm use as they suffered from containment problems, high cost and variability of effectiveness.
文摘LiCoO2 gradient coated LiNi0.96Co0.04O2 material and iso-structure LiNi0.8Co0.2O2 material (the same molar ratio 8/2 of Ni/Co in the two materials) as cathode for lithium-ion batteries were synthesized with a co-precipitation method. Microstructure of iso-structure LiNi0.8Co0.2O2 were about the same as that of LiNiO2, and the structure of the coated material was much more similar to that of LiCoO2 based on the X-ray diffraction patterns. The cycling voltammetry and galvanostatic cycle tests show that the properties of the coated material were improved significantly. The first specific charge and discharge capacity for the coated material was 249.20 mAh·g-1 and 207.90 mAh·g-1 respectively, and the specific discharge capacity for the 100th cycle was still 186.02 mAh·g-1 with an irreversible loss of only 21.1 mAh·g-1. This showed that the new material had a good lithium intercalation-deintrercalation performance. Meanwhile, the mechanism of the sintering reaction was proposed. During the sintering reaction of the precursor with LiOH, the Li+-ion permeated into the body of precursors because the shape of the precursor particles was not changed basically based on scanning electronic microscopy. So, the layer microstructure of the precursor is important for the layer microstructure of lithium nickel cobalt oxides electrode material.
基金the state assignment on the topic“Interdisciplinary approaches to the creation and study of micro-/nanostructured systems”(No.125012200595-8)Conductivity measurements of the samples were performed in accordance with the state task for FRC PCP and MC RAS(No.124013000692-4).
文摘A series of solid solutions with high content of Tb_(2)O_(3)-(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.667-0.830)are synthesized in the Tb_(2)O_(3)-TiO_(2)system via co-precipitation and/or mechanical activation.This is followed by high-temperature annealing for 4-22 h.The X-ray diffrac-tion method showed that the fluorite structure was realized for(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.75-0.817).The solid solution Tb_(3.12)Ti_(0.88)O_(6.44)(64mol%Tb_(2)O_(3)(x=0.78))with a fluorite structure exhibited a maximum hole conductivity of~22 S/cm at 600℃.To separate the ionic component of the conductivity in the electronic conductor Tb_(3.12)Ti_(0.88)O_(6.44),its high entropy analogue,(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44),was synthesized in which all rare-earth elements(REE)cations exhibited valency of+3.Consequently,the contribution of ionic(proton)conductivity(~7×10^(−6)S/cm at 600℃)was revealed with respect to the background of dominant hole conductivity.The proton conduct-ivity of high-entropy oxide(HEО)(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44)was confirmed by the detection of the isotope effect,where the mobility of the heavier O-D ions was lower than that of the O-H hydroxyls,resulting in lower conductivity in D_(2)O vapors when com-pared to H_(2)O.
基金supported by a grant from the Education Department of Heilongjiang Province of China,No.12541398
文摘Astragaloside Ⅳ is the main active compound of Astragalus membranaceus. Astragaloside Ⅳ has strong anti-oxidative activities and protective effects against progression of peripheral neuropathy. In this study, we determined whether astragaloside Ⅳ protects retinal ganglion cells(RGC) from oxidative stress injury using the rat RGC-5 cell line. Hydrogen peroxide(H_2O_2) was used to induce oxidative stress injury, with the protective effect of astragaloside Ⅳ examined. Cell Counting Kit-8 and 4′,6-diamidino-2-phenylindole staining showed that astragaloside Ⅳ increased cell survival rate and decreased apoptotic cell number. Flow cytometry showed that astragaloside Ⅳ decreased H_2O_2-induced reactive oxygen species levels. While laser confocal microscopy showed that astragaloside Ⅳ inhibited the H_2O_2-induced decrease of mitochondrial membrane potential. Western blot assay showed that astragaloside Ⅳ reduced cytochrome c release induced by H_2O_2, inhibited Bax and caspase-3 expression, and increased Bcl-2 expression. Altogether, these results indicate that astragaloside Ⅳ has potential protective effects against H_2O_2-induced oxidative stress in retinal ganglion cells.
文摘Mesoporous CuFe2O4 solid solution nanopowders with high specific surface areas were synthesized by a novel, very simple and inexpensive sol-gel route using propylene oxide as gelation agent, and used as the catalyst in low temperature CO oxidation. The samples were characterized by X-ray diffraction, N2 adsorption-desorption, thermogravimetric/differential thermal analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and temperature-programmed reduction. The results revealed that the samples have a nanocrystalline structure with crystals in the range of 10 to 25 nm, and that all the catalysts have mesoporous pores. The addition of Cu into iron oxide affected its structural and catalytic properties. The sample containing 15 mol% Cu showed the highest specific surface area and catalytic activity, and showed high catalytic stability in low temperature CO oxidation.
基金supported by the grant from Shaanxi Technology Committee of China,No.2013JM4001the China Scholarship Council(CSC)
文摘Our previous study showed an association between advanced glycation end products (AGEs) and neural tube defects (NTDs). To understand the molecular mechanisms underlying the effect of AGEs on neural tube development, C57BL/6 female mice were fed for 4 weeks with com- mercial food containing 3% advanced glycation end product bovine serum albumin (AGE-BSA) or 3% bovine serum albumin (BSA) as a control. After mating mice, oxidative stress markers including malondialdehyde and H202 were measured at embryonic day 7.5 (E7.5) of ges- tation, and the level of intracellular reactive oxygen species (ROS) in embryonic cells was determined at E8.5. In addition to evaluating NTDs, an enzyme-linked immunosorbent assay was used to determine the effect of embryonic protein administration on the N-(carboxymethyl) lysine reactivity of acid and carboxyethyl lysine antibodies at E10.5. The results showed a remarkable increase in the incidence of NTDs at El0.5 in embryos of mice fed with AGE-BSA (no hyperglycemia) compared with control mice. Moreover, embryonic protein administration resulted in a noticeable increase in the reactivity of N-(carboxymethyl) lysine and N(ε)-(carboxyethyl) lysine antibodies. Malondialdehyde and H2O2 levels in embryonic cells were increased at E7.5, followed by increased intracellular ROS levels at E8.5. Vitamin E supplementation could partially recover these phenomena. Collectively, these results suggest that AGE-BSA could induce NTDs in the absence of hyperglycemia by an underlying mechanism that is at least partially associated with its capacity to increase embryonic oxidative stress levels.
基金supported by the National Natural Science Foundation(82372206)the Jiangsu Provincial Health Commission(H2023107)the project of basic and clinical research on cardiac arrest in the Emergency and Critical Care Department of the Second Affiliated Hospital of Soochow University(XKTJ-XK202408-2).
文摘Non-O1/non-O139 Vibrio cholerae(NOVC)has multiple pathogenic pathways in humans.The cause of disease in influenced by the virulence genes carried by the infecting strain and the health condition of the host.[1-2]When seafood,food and water sources are contaminated with feces,people are prone to gastroenteritis,and direct exposure to contaminated water may cause wound infection.