Start-up working condition is the key to the research of optimal engagementof automatic clutch for AMT. In order to guarantee an ideal dynamic performance of the clutchengagement, an optimal controller is designed by ...Start-up working condition is the key to the research of optimal engagementof automatic clutch for AMT. In order to guarantee an ideal dynamic performance of the clutchengagement, an optimal controller is designed by considering throttle angle, engine speed, gearratio, vehicle acceleration and road condition. The minimum value principle is also introduced toachieve an optimal dynamic performance of the nonlinear system compromised in friction plate wearand vehicle drive quality. The optimal trajectory of the clutch engagement can be described in theform of explicit and analytical expressions and characterized by the deterministic and accuratecontrol strategy in stead of indeterministic and soft control techniques which need thousands ofexperiments. For validation of the controller, test work is carried out for the automated clutchengagements in a commercial car with an traditional mechanical transmission, a hydraulic actuator, agroup of sensors and a portable computer system. It is shown through experiments that dynamicbehaviors of the clutch engagement operated by the optimal control are more effective and efficientthan those by fuzzy control.展开更多
An investigation is made to the friction chutch engagement control of automotive AMT systems based on a nonlinear dynamic model with double inputs. According to friction torque transmission characteristics during clut...An investigation is made to the friction chutch engagement control of automotive AMT systems based on a nonlinear dynamic model with double inputs. According to friction torque transmission characteristics during clutch engagement, an equivalent, fully controllable and linearized model and the feedback linearization control are derived from the original system with nonlinearities via homomorphic transforms. By the resulting mathematical modeling, computer simulations are made both for the original nonlinear and feedback linearized systems with incorporation of ordinary PID controllers to follow ideal vehicle dynamic responses. It has been shown by comparison between the two sets of numerical results that the feedback linearization control designed for the nonlinear system is of fine accuracy and robustness in model tracking behaviors of clutch engagements.展开更多
Power electronic converters are commonly used in daily life,and the nonlinear phenomena that arise during their operation have garnered significant attention.Several classical nonlinear phenomena are introduced,and th...Power electronic converters are commonly used in daily life,and the nonlinear phenomena that arise during their operation have garnered significant attention.Several classical nonlinear phenomena are introduced,and their causes are discussed.Then,the Hopf bifurcation phenomenon is analyzed in detail through specific examples.In addition,the causes and cases of coexisting attractor phenomena in power electronic convertersare analyzed.Based onthese discussions,potential directions for studying nonlinear system dynamics in power electronics are presented.展开更多
文摘Start-up working condition is the key to the research of optimal engagementof automatic clutch for AMT. In order to guarantee an ideal dynamic performance of the clutchengagement, an optimal controller is designed by considering throttle angle, engine speed, gearratio, vehicle acceleration and road condition. The minimum value principle is also introduced toachieve an optimal dynamic performance of the nonlinear system compromised in friction plate wearand vehicle drive quality. The optimal trajectory of the clutch engagement can be described in theform of explicit and analytical expressions and characterized by the deterministic and accuratecontrol strategy in stead of indeterministic and soft control techniques which need thousands ofexperiments. For validation of the controller, test work is carried out for the automated clutchengagements in a commercial car with an traditional mechanical transmission, a hydraulic actuator, agroup of sensors and a portable computer system. It is shown through experiments that dynamicbehaviors of the clutch engagement operated by the optimal control are more effective and efficientthan those by fuzzy control.
文摘An investigation is made to the friction chutch engagement control of automotive AMT systems based on a nonlinear dynamic model with double inputs. According to friction torque transmission characteristics during clutch engagement, an equivalent, fully controllable and linearized model and the feedback linearization control are derived from the original system with nonlinearities via homomorphic transforms. By the resulting mathematical modeling, computer simulations are made both for the original nonlinear and feedback linearized systems with incorporation of ordinary PID controllers to follow ideal vehicle dynamic responses. It has been shown by comparison between the two sets of numerical results that the feedback linearization control designed for the nonlinear system is of fine accuracy and robustness in model tracking behaviors of clutch engagements.
基金Supported by the National Natural Science Foundation of China(62471184).
文摘Power electronic converters are commonly used in daily life,and the nonlinear phenomena that arise during their operation have garnered significant attention.Several classical nonlinear phenomena are introduced,and their causes are discussed.Then,the Hopf bifurcation phenomenon is analyzed in detail through specific examples.In addition,the causes and cases of coexisting attractor phenomena in power electronic convertersare analyzed.Based onthese discussions,potential directions for studying nonlinear system dynamics in power electronics are presented.