Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I...Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I), the present paper developed a finite element modeling for the mechanical-magneto-thermal multi-field coupling of a ferromagnetic thin shell. The numerical modeling composes of finite element equations for three sub-systems of magnetic, thermal and deformation fields, as well as iterative methods for nonlinearities of the geometrical large-deflection and the multi-field coupling of the ferromagnetic shell. As examples, the numerical simulations on magneto-elastic behaviors of a ferromagnetic cylindrical shell in an applied magnetic field, and magneto-thermo-elastic behaviors of the shell in applied magnetic and thermal fields are carried out. The results are in good agreement with the experimental ones.展开更多
In the paper, 3-D analysis method with unitive schemes is set up, which is used to resolve the uplift with multiple moving boundaries and multiple nonlinear coupling for anchored liquid storage tanks. hi it, an algori...In the paper, 3-D analysis method with unitive schemes is set up, which is used to resolve the uplift with multiple moving boundaries and multiple nonlinear coupling for anchored liquid storage tanks. hi it, an algorithm of quasi-harmonious finite elements for arbitrary quadrilateral of thin plates and shells is built up to analyze the multiple coupling problems of general thin plates and shells structures with three dimensions, the complementary equations for analyzing uplifting moving boundary problems are deduced. The axial symmetry and presumption of beam type mode are not used. In it, an algorithm is put forward for analyzing the Navier-Stokes problems of unsteady, three-dimensional, and viscous liquid with sloshing of moving boundary surfaces in large amplitude under ALE frame by scheme of time-split-steps to which linear potential theory is not applied. The algorithms can be used to analyze the solid-liquid multiple nonlinear coupling problems with 3-D moving boundary with friction in multiple places.展开更多
This paper investigates the entanglement of a two-qutrit Heisenberg XXX chain with nonlinear couplings under an inhomogeneous magnetic field. By the concept of negativity, we find that the critical temperature increas...This paper investigates the entanglement of a two-qutrit Heisenberg XXX chain with nonlinear couplings under an inhomogeneous magnetic field. By the concept of negativity, we find that the critical temperature increases with the increase of inhomogeneous magnetic field b. Our study indicates that for any |K| 〉 |J|, or |K| 〈 |J| entanglement always exists for certain regions. We also find that at the critical point, the entanglement becomes a nonanalytic function of B and a quantum phase transition occurs.展开更多
Synchronization in coupled oscillator networks has attracted much attention from many fields of science and engineering. In this paper, it is firstly proved that the oscifiator network with nonlinear coupling is also ...Synchronization in coupled oscillator networks has attracted much attention from many fields of science and engineering. In this paper, it is firstly proved that the oscifiator network with nonlinear coupling is also eventually dissipative under the hypothesis of eventual dissipation of the uncoupled oscillators. And the dynamics of the network is analyzed in its absorbing domain by combining two methods developed recently. Suufficient conditions for synchronization in the oscillator networks with nonlinear coupling are obtained. The two methods are combined effectively and the results embody the respective merits of the two methods. Numerical simulations confirm the validity of the results.展开更多
In this work,a novel strategy for the synchronisation of nonlinear coupled networked systems is introduced.Using contraction theory,a constructive criterion for synchronisation in interconnected networked systems is p...In this work,a novel strategy for the synchronisation of nonlinear coupled networked systems is introduced.Using contraction theory,a constructive criterion for synchronisation in interconnected networked systems is proposed wherein,a systematic procedure to derive a sufficient condition is also elaborated,which ensures exponential convergence of each system.The individual systems in proposed structure of coupled network interact through integrated coupling function which satisfies Lipschitz condition.The uncoupled system nonlinearities are assumed to be restricted by an upper bound.We show using an analytical approach that nonlinear diffusive coupling in terms of Lipschitz functions provided with bounds on system states can result in suitable gains leading to synchronised behaviour of the network.The exponential convergence of each state of interconnected systems is guaranteed if and only if a sufficient condition on coupling gains and system nonlinearities is fulfilled.The efficacy of proposed approach is demonstrated by extensive simulations.展开更多
A nonlinear saturation mechanism for reversed shear Alfvén eigenmode(RSAE)is proposed and analyzed,and is shown to be of relevance to typical reactor parameter region.The saturation is achieved through the genera...A nonlinear saturation mechanism for reversed shear Alfvén eigenmode(RSAE)is proposed and analyzed,and is shown to be of relevance to typical reactor parameter region.The saturation is achieved through the generation of high-frequency quasi-mode due to nonlinear coupling of two RSAEs,which is then damped due to coupling with the shear Alfvén continuum,and leads to the nonlinear saturation of the primary RSAEs.An estimation of the nonlinear damping rate is also provided.展开更多
A mathematical model was developed for a complex nonlinear coupling isolator for attenuating vibration which coupled quadratic damping, viscous damping, Coulomb damping, and nonlinear spring forces. The approximate an...A mathematical model was developed for a complex nonlinear coupling isolator for attenuating vibration which coupled quadratic damping, viscous damping, Coulomb damping, and nonlinear spring forces. The approximate analytical solution for the dynamic transmissibility of the isolator was deduced by combining Fourier transforms and the harmonic balance method with deterministic excitation. The mathematical characteristics of the dynamic transmissibility were analyzed to illustrate the dynamic performance of the isolator. The analytical results show multiple solutions, especially the low-frequency attenuation characteristics below the resonance frequency. The results provide a theoretical basis for the design of nonlinear isolators.展开更多
Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational ide...Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their ttamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations.展开更多
We construct nonlinear super integrable couplings of the super integrable Dirac hierarchy based on an enlarged matrix Lie superalgebra.Then its super Hamiltonian structure is furnished by super trace identity.As its r...We construct nonlinear super integrable couplings of the super integrable Dirac hierarchy based on an enlarged matrix Lie superalgebra.Then its super Hamiltonian structure is furnished by super trace identity.As its reduction,we gain the nonlinear integrable couplings of the classical integrable Dirac hierarchy.展开更多
In this paper, a new nonlinear integrable coupling system of the soliton hierarchy is presented. Prom the Lax pairs, the coupled KdV equations are constructed successfully. Based on the prolongation method of Wahlquis...In this paper, a new nonlinear integrable coupling system of the soliton hierarchy is presented. Prom the Lax pairs, the coupled KdV equations are constructed successfully. Based on the prolongation method of Wahlquist and Estabrook, we study the prolongation structure of the nonlinear integrable couplings of the KdV equation.展开更多
We construct a nonlinear integrable coupling of discrete soliton hierarchy, and establish the infinite conservation laws (CLs) for the nonlinear integrable coupling of the lattice hierarchy. As an explicit applicati...We construct a nonlinear integrable coupling of discrete soliton hierarchy, and establish the infinite conservation laws (CLs) for the nonlinear integrable coupling of the lattice hierarchy. As an explicit application of the method proposed in the paper, the infinite conservation laws of the nonlinear integrable coupling of the Volterra lattice hierarchy are presented.展开更多
We study analytically and numerically the nonlinear collective dynamics of quasi-one-dimensional spin-orbit coupled spin-1 Bose-Einstein condensates trapped in harmonic potential.The ground state of the system is dete...We study analytically and numerically the nonlinear collective dynamics of quasi-one-dimensional spin-orbit coupled spin-1 Bose-Einstein condensates trapped in harmonic potential.The ground state of the system is determined by minimizing the Lagrange density,and the coupled equations of motions for the center-of-mass coordinate of the condensate and its width are derived.Then,two low energy excitation modes in breathing dynamics and dipole dynamics are obtained analytically,and the mechanism of exciting the anharmonic collective dynamics is revealed explicitly.The coupling among spin-orbit coupling,Raman coupling and spin-dependent interaction results in multiple external collective modes,which leads to the anharmonic collective dynamics.The cooperative effect of spin momentum locking and spin-dependent interaction results in coupling of dipolar and breathing dynamics,which strongly depends on spin-dependent interaction and behaves distinct characters in different phases.Interestingly,in the absence of spin-dependent interaction,the breathing dynamics is decoupled from spin dynamics and the breathing dynamics is harmonic.Our results provide theoretical evidence for deep understanding of the ground sate phase transition and the nonlinear collective dynamics of the system.展开更多
In this paper,to better reveal the surface effect and the screening effect as well as the nonlinear multi-field coupling characteristic of the multifunctional piezoelectric semiconductor(PS)nanodevice,and to further i...In this paper,to better reveal the surface effect and the screening effect as well as the nonlinear multi-field coupling characteristic of the multifunctional piezoelectric semiconductor(PS)nanodevice,and to further improve its working performance,a magneto-mechanical-thermo coupling theoretical model is theoretically established for the extensional analysis of a three-layered magneto-electro-semiconductor coupling laminated nanoplate with the surface effect.Next,by using the current theoretical model,some numerical analyses and discussion about the surface effect,the corresponding critical thickness of the nanoplate,and the distributions of the physical fields(including the electron concentration perturbation,the electric potential,the electric field,the average electric displacement,the effective polarization charge density,and the total charge density)under different initial state electron concentrations,as well as their active manipulation via some external magnetic field,pre-stress,and temperature stimuli,are performed.Utilizing the nonlinear multi-field coupling effect induced by inevitable external stimuli in the device operating environment,this paper not only provides theoretical support for understanding the size-dependent tuning/controlling of carrier transport as well as its screening effect,but also assists the design of a series of multiferroic PS nanodevices.展开更多
Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identi...Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identity, and the conserved functionals were proved to be in involution in pairs under the defined Poisson bracket. As its reduction,special cases of this nonlinear super integrable couplings were obtained.展开更多
We study the coupling of cutoff modes in a chain of metallic nanorods embedded in a Kerr nonlinear optical medium with strong near-field interactions analytically. Based on a quasidiscreteness approach, we derive a sy...We study the coupling of cutoff modes in a chain of metallic nanorods embedded in a Kerr nonlinear optical medium with strong near-field interactions analytically. Based on a quasidiscreteness approach, we derive a system of two coupled nonlinear Schrbdinger equations governing the evolution of the envelopes of these modes. It is shown that this system supports a variety of subwavelength plasmonic lattice vector solitons of the bright- bright, bright-dark, dark-bright, and dark-dark type through a cross-phase modulation. It is also shown that the existence of different solitons depends strongly on the gap width scaled for the rod radius and the type of nonlinearity of the embedded medium.展开更多
Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. And its super Hamiltonian structures were established by using super trace identit...Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. And its super Hamiltonian structures were established by using super trace identity. As its reduction, special cases of this nonlinear super integrable coupling were obtained.展开更多
We introduce a hybrid cavity optomechanical model capable of generating significant genuine tripartite interactions and entanglement among coherent degrees of freedom.However,realizing and controlling such tripartite ...We introduce a hybrid cavity optomechanical model capable of generating significant genuine tripartite interactions and entanglement among coherent degrees of freedom.However,realizing and controlling such tripartite interactions and their entanglement pose crucial challenges that remain largely unexplored.In this work,we predict a tripartite coupling mechanism within a hybrid quantum system consisting of a vibrating mechanical oscillator,a two-level atom and a singlefrequency cavity field.We specifically propose a mechanism for tripartite and cross-Kerr nonlinear coupling through displacement and squeezing transformations.By adjusting the optical amplitude of the pump light,we can effectively enhance these nonlinear couplings,facilitating the manipulation of entangled and squeezed states.The resulting tripartite genuine entanglement exhibits distinct evolutionary characteristics.Notably,when the pump light amplitude is large,the tripartite entanglement persists for longer time.Additionally,the phonon displays characteristics of both cooling and squeezing.Our study presents a pathway for exploring and exploiting controllable multipartite entanglement,as well as achieving phonon cooling and squeezing with the assistance of a mesoscopic harmonic oscillator.This work underscores the innovative potential of our model in advancing the field of optomechanics and quantum entanglement.展开更多
In this study, we investigate the nonlinear cou- pling magneto-electric (ME) effect of a giant magnetostric- tive/piezoelectric composite cylinder. The nonlinear consti- tutive relations of the ME material are taken...In this study, we investigate the nonlinear cou- pling magneto-electric (ME) effect of a giant magnetostric- tive/piezoelectric composite cylinder. The nonlinear consti- tutive relations of the ME material are taken into account, and the influences of the nonlinear material properties on the ME effect are investigated for the static and dynamic cases, respectively. The influences of different constraint conditions on the ME effect are discussed. In the dynamic case considering nonlinear material properties, the double frequency ME response (The response frequency is twice the applied magnetic frequency) is obtained and discussed, which can be used to explain the experiment phenomenon in which the input signal with frequency f is converted to the output signal with 2f in ME laminated structures. Some calculations on nonlinear ME effect are conducted. The obtained results indicate that the nonlinear material properties affect not only the magnitude of the ME effect in the static case but also the ME response frequency in the dynamic case展开更多
Based on the complexity of mine stratum and coupling of the multi-frequency for the damage of mine stratum,using the method of on-site inspection and mathematical statistics,the regulation and nonlinear characteristic...Based on the complexity of mine stratum and coupling of the multi-frequency for the damage of mine stratum,using the method of on-site inspection and mathematical statistics,the regulation and nonlinear characteristics of strata collapse in mine stratum's multi-frequency mining were put forward and systemically studied.Study result shows that the influence of multi-frequency mining in mine stratum has the feature of multi-frequency incontinuity,multi-characteristic and multi-type nonlinear collapse,strata collapse activa- tion turned worse,presenting an accumulation effect of multi-frequency mining for the strata damage.With the example of multi-frequency mining in the mine,the real characte- ristics of strata collapse by multi-frequency mining and nonlinear characteristics of accu- mulative response damage were analyzed.Research achievements about the surface re- cover and controlling of strata collapse by the multi-frequency mining have instruction meaning.展开更多
Considering the static stability and the change of the displacement volume, including the influences of higher order nonlinear terms and the instantaneous wave surface, the nonlinear coupled heave-pitch motion was est...Considering the static stability and the change of the displacement volume, including the influences of higher order nonlinear terms and the instantaneous wave surface, the nonlinear coupled heave-pitch motion was established in stochastic waves. The responses of heave-pitch coupling motion for the Truss Spar platform were investigated. It was found that, when the characteristic frequency of a stochastic wave is close to the natural heave frequency, the large amplitude pitch motion is induced under the parametric-forced excitation, which is called the Mathieu instability. It was observed that the heave mode energy is transferred to pitch mode when the heave motion amplitude exceeds a certain extent. In addition, the probability of internal resonant heave-pitch motion is greatly reduced while the characteristic wave frequency is away from the natural heave frequency.展开更多
基金supported by he National Natural Science Foundation of China (No.10872081)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (No.111005)
文摘Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I), the present paper developed a finite element modeling for the mechanical-magneto-thermal multi-field coupling of a ferromagnetic thin shell. The numerical modeling composes of finite element equations for three sub-systems of magnetic, thermal and deformation fields, as well as iterative methods for nonlinearities of the geometrical large-deflection and the multi-field coupling of the ferromagnetic shell. As examples, the numerical simulations on magneto-elastic behaviors of a ferromagnetic cylindrical shell in an applied magnetic field, and magneto-thermo-elastic behaviors of the shell in applied magnetic and thermal fields are carried out. The results are in good agreement with the experimental ones.
文摘In the paper, 3-D analysis method with unitive schemes is set up, which is used to resolve the uplift with multiple moving boundaries and multiple nonlinear coupling for anchored liquid storage tanks. hi it, an algorithm of quasi-harmonious finite elements for arbitrary quadrilateral of thin plates and shells is built up to analyze the multiple coupling problems of general thin plates and shells structures with three dimensions, the complementary equations for analyzing uplifting moving boundary problems are deduced. The axial symmetry and presumption of beam type mode are not used. In it, an algorithm is put forward for analyzing the Navier-Stokes problems of unsteady, three-dimensional, and viscous liquid with sloshing of moving boundary surfaces in large amplitude under ALE frame by scheme of time-split-steps to which linear potential theory is not applied. The algorithms can be used to analyze the solid-liquid multiple nonlinear coupling problems with 3-D moving boundary with friction in multiple places.
文摘This paper investigates the entanglement of a two-qutrit Heisenberg XXX chain with nonlinear couplings under an inhomogeneous magnetic field. By the concept of negativity, we find that the critical temperature increases with the increase of inhomogeneous magnetic field b. Our study indicates that for any |K| 〉 |J|, or |K| 〈 |J| entanglement always exists for certain regions. We also find that at the critical point, the entanglement becomes a nonanalytic function of B and a quantum phase transition occurs.
基金National Natural Science Foundation of China under Grant Nos.70431002 and 10672093
文摘Synchronization in coupled oscillator networks has attracted much attention from many fields of science and engineering. In this paper, it is firstly proved that the oscifiator network with nonlinear coupling is also eventually dissipative under the hypothesis of eventual dissipation of the uncoupled oscillators. And the dynamics of the network is analyzed in its absorbing domain by combining two methods developed recently. Suufficient conditions for synchronization in the oscillator networks with nonlinear coupling are obtained. The two methods are combined effectively and the results embody the respective merits of the two methods. Numerical simulations confirm the validity of the results.
文摘In this work,a novel strategy for the synchronisation of nonlinear coupled networked systems is introduced.Using contraction theory,a constructive criterion for synchronisation in interconnected networked systems is proposed wherein,a systematic procedure to derive a sufficient condition is also elaborated,which ensures exponential convergence of each system.The individual systems in proposed structure of coupled network interact through integrated coupling function which satisfies Lipschitz condition.The uncoupled system nonlinearities are assumed to be restricted by an upper bound.We show using an analytical approach that nonlinear diffusive coupling in terms of Lipschitz functions provided with bounds on system states can result in suitable gains leading to synchronised behaviour of the network.The exponential convergence of each state of interconnected systems is guaranteed if and only if a sufficient condition on coupling gains and system nonlinearities is fulfilled.The efficacy of proposed approach is demonstrated by extensive simulations.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB0790000)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP008)National Natural Science Foundation of China(Nos.12275236 and 12261131622)。
文摘A nonlinear saturation mechanism for reversed shear Alfvén eigenmode(RSAE)is proposed and analyzed,and is shown to be of relevance to typical reactor parameter region.The saturation is achieved through the generation of high-frequency quasi-mode due to nonlinear coupling of two RSAEs,which is then damped due to coupling with the shear Alfvén continuum,and leads to the nonlinear saturation of the primary RSAEs.An estimation of the nonlinear damping rate is also provided.
基金Supported by the National Defense Science Foundation of China (No. 00J16.2.5.DZ0502), the Natural Science Foundation for Qualified Personnel of Jiangsu University (No. 04JDG027), and the Natural Science Foundation of Guangxi Zhuang Autonomous Region (Nos. 0339037 and 0141042)
文摘A mathematical model was developed for a complex nonlinear coupling isolator for attenuating vibration which coupled quadratic damping, viscous damping, Coulomb damping, and nonlinear spring forces. The approximate analytical solution for the dynamic transmissibility of the isolator was deduced by combining Fourier transforms and the harmonic balance method with deterministic excitation. The mathematical characteristics of the dynamic transmissibility were analyzed to illustrate the dynamic performance of the isolator. The analytical results show multiple solutions, especially the low-frequency attenuation characteristics below the resonance frequency. The results provide a theoretical basis for the design of nonlinear isolators.
基金Supported by the Fundamental Research Funds of the Central University under Grant No. 2010LKS808the Natural Science Foundation of Shandong Province under Grant No. ZR2009AL021
文摘Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their ttamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations.
基金Supported by the Natural Science Foundation of China under Grant No. 60972164the Program for Liaoning Excellent Talents in University under Grant No. LJQ2011136+2 种基金the Key Technologies R&D Program of Liaoning Province under Grant No. 2011224006the Program for Liaoning Innovative Research Team in University under Grant No. LT2011019the Science and Technology Program of Shenyang under Grant No. F11-264-1-70
文摘We construct nonlinear super integrable couplings of the super integrable Dirac hierarchy based on an enlarged matrix Lie superalgebra.Then its super Hamiltonian structure is furnished by super trace identity.As its reduction,we gain the nonlinear integrable couplings of the classical integrable Dirac hierarchy.
基金Project supported by the Scientific Research Fundation of the Education Department of Liaoning Province,China(GrantNo.L2010513)the China Postdoctoral Science Foundation(Grant No.2011M500404)
文摘In this paper, a new nonlinear integrable coupling system of the soliton hierarchy is presented. Prom the Lax pairs, the coupled KdV equations are constructed successfully. Based on the prolongation method of Wahlquist and Estabrook, we study the prolongation structure of the nonlinear integrable couplings of the KdV equation.
基金Project supported by the Postdoctoral Science Foundation of China (Grant No. 2011M500404 )the Program for Liaoning Excellent Talents in University,China (Grant No. LJQ2011119)
文摘We construct a nonlinear integrable coupling of discrete soliton hierarchy, and establish the infinite conservation laws (CLs) for the nonlinear integrable coupling of the lattice hierarchy. As an explicit application of the method proposed in the paper, the infinite conservation laws of the nonlinear integrable coupling of the Volterra lattice hierarchy are presented.
基金supported by the National Natural Science Foundation of China(Grant Nos.12164042,12264045,11764039,11475027,11865014,12104374,and 11847304)the Natural Science Foundation of Gansu Province(Grant Nos.17JR5RA076 and 20JR5RA526)+2 种基金the Scientific Research Project of Gansu Higher Education(Grant No.2016A-005)the Innovation Capability Enhancement Project of Gansu Higher Education(Grant Nos.2020A-146 and 2019A-014)the Creation of Science and Technology of Northwest Normal University(Grant No.NWNU-LKQN-18-33)。
文摘We study analytically and numerically the nonlinear collective dynamics of quasi-one-dimensional spin-orbit coupled spin-1 Bose-Einstein condensates trapped in harmonic potential.The ground state of the system is determined by minimizing the Lagrange density,and the coupled equations of motions for the center-of-mass coordinate of the condensate and its width are derived.Then,two low energy excitation modes in breathing dynamics and dipole dynamics are obtained analytically,and the mechanism of exciting the anharmonic collective dynamics is revealed explicitly.The coupling among spin-orbit coupling,Raman coupling and spin-dependent interaction results in multiple external collective modes,which leads to the anharmonic collective dynamics.The cooperative effect of spin momentum locking and spin-dependent interaction results in coupling of dipolar and breathing dynamics,which strongly depends on spin-dependent interaction and behaves distinct characters in different phases.Interestingly,in the absence of spin-dependent interaction,the breathing dynamics is decoupled from spin dynamics and the breathing dynamics is harmonic.Our results provide theoretical evidence for deep understanding of the ground sate phase transition and the nonlinear collective dynamics of the system.
基金supported by the National Natural Science Foundation of China(Nos.12072253,11972176,and 12062011)the Doctoral Science Fund of Lanzhou University of Technology of China(No.062002)the Opening Project from the State Key Laboratory for Strength and Vibration of Mechanical Structures of China(No.SV2021-KF-19)。
文摘In this paper,to better reveal the surface effect and the screening effect as well as the nonlinear multi-field coupling characteristic of the multifunctional piezoelectric semiconductor(PS)nanodevice,and to further improve its working performance,a magneto-mechanical-thermo coupling theoretical model is theoretically established for the extensional analysis of a three-layered magneto-electro-semiconductor coupling laminated nanoplate with the surface effect.Next,by using the current theoretical model,some numerical analyses and discussion about the surface effect,the corresponding critical thickness of the nanoplate,and the distributions of the physical fields(including the electron concentration perturbation,the electric potential,the electric field,the average electric displacement,the effective polarization charge density,and the total charge density)under different initial state electron concentrations,as well as their active manipulation via some external magnetic field,pre-stress,and temperature stimuli,are performed.Utilizing the nonlinear multi-field coupling effect induced by inevitable external stimuli in the device operating environment,this paper not only provides theoretical support for understanding the size-dependent tuning/controlling of carrier transport as well as its screening effect,but also assists the design of a series of multiferroic PS nanodevices.
基金Supported by the Natural Science Foundation of Henan Province(162300410075) the Science and Technology Key Research Foundation of the Education Department of Henan Province(14A110010) the Youth Backbone Teacher Foundationof Shangqiu Normal University(2013GGJS02)
文摘Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identity, and the conserved functionals were proved to be in involution in pairs under the defined Poisson bracket. As its reduction,special cases of this nonlinear super integrable couplings were obtained.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921502the National Natural Science Foundation of China under Grant Nos 11374150,11074120,11274163 and 11274164the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘We study the coupling of cutoff modes in a chain of metallic nanorods embedded in a Kerr nonlinear optical medium with strong near-field interactions analytically. Based on a quasidiscreteness approach, we derive a system of two coupled nonlinear Schrbdinger equations governing the evolution of the envelopes of these modes. It is shown that this system supports a variety of subwavelength plasmonic lattice vector solitons of the bright- bright, bright-dark, dark-bright, and dark-dark type through a cross-phase modulation. It is also shown that the existence of different solitons depends strongly on the gap width scaled for the rod radius and the type of nonlinearity of the embedded medium.
文摘Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. And its super Hamiltonian structures were established by using super trace identity. As its reduction, special cases of this nonlinear super integrable coupling were obtained.
基金supported by the National Natural Science Foundation of China(Grant No.12074213)the Natural Science Foundation of Shandong Province(Grant No.ZR2021MA078)the Research Project of the National Key Laboratory(Grant No.KF202004)。
文摘We introduce a hybrid cavity optomechanical model capable of generating significant genuine tripartite interactions and entanglement among coherent degrees of freedom.However,realizing and controlling such tripartite interactions and their entanglement pose crucial challenges that remain largely unexplored.In this work,we predict a tripartite coupling mechanism within a hybrid quantum system consisting of a vibrating mechanical oscillator,a two-level atom and a singlefrequency cavity field.We specifically propose a mechanism for tripartite and cross-Kerr nonlinear coupling through displacement and squeezing transformations.By adjusting the optical amplitude of the pump light,we can effectively enhance these nonlinear couplings,facilitating the manipulation of entangled and squeezed states.The resulting tripartite genuine entanglement exhibits distinct evolutionary characteristics.Notably,when the pump light amplitude is large,the tripartite entanglement persists for longer time.Additionally,the phonon displays characteristics of both cooling and squeezing.Our study presents a pathway for exploring and exploiting controllable multipartite entanglement,as well as achieving phonon cooling and squeezing with the assistance of a mesoscopic harmonic oscillator.This work underscores the innovative potential of our model in advancing the field of optomechanics and quantum entanglement.
基金supported by the National Natural Science Foundation of China (11072093)the State Key Program of National Natural Science of China (11032006)the Fundamental Research Funds for the Central Universities (lzujbky-2012-k05)
文摘In this study, we investigate the nonlinear cou- pling magneto-electric (ME) effect of a giant magnetostric- tive/piezoelectric composite cylinder. The nonlinear consti- tutive relations of the ME material are taken into account, and the influences of the nonlinear material properties on the ME effect are investigated for the static and dynamic cases, respectively. The influences of different constraint conditions on the ME effect are discussed. In the dynamic case considering nonlinear material properties, the double frequency ME response (The response frequency is twice the applied magnetic frequency) is obtained and discussed, which can be used to explain the experiment phenomenon in which the input signal with frequency f is converted to the output signal with 2f in ME laminated structures. Some calculations on nonlinear ME effect are conducted. The obtained results indicate that the nonlinear material properties affect not only the magnitude of the ME effect in the static case but also the ME response frequency in the dynamic case
基金the National Natural Science Foundation of China(50604009)Open Research Project of State Key Laboratory of Coal Resources & Safe Mining(CUMTB)(2007-09)+3 种基金Liaoning Technical University Science Research Foundation(04A01009)Natural Science Research Foundation of Liaoning Province(20022158202183392)Liaoning Technical University Open Research Foundation Program of the Geomantics & Application Provincial Level Key Laboratory(2004014)
文摘Based on the complexity of mine stratum and coupling of the multi-frequency for the damage of mine stratum,using the method of on-site inspection and mathematical statistics,the regulation and nonlinear characteristics of strata collapse in mine stratum's multi-frequency mining were put forward and systemically studied.Study result shows that the influence of multi-frequency mining in mine stratum has the feature of multi-frequency incontinuity,multi-characteristic and multi-type nonlinear collapse,strata collapse activa- tion turned worse,presenting an accumulation effect of multi-frequency mining for the strata damage.With the example of multi-frequency mining in the mine,the real characte- ristics of strata collapse by multi-frequency mining and nonlinear characteristics of accu- mulative response damage were analyzed.Research achievements about the surface re- cover and controlling of strata collapse by the multi-frequency mining have instruction meaning.
基金Supported by the National Natural Science Foundation of China(No. 51079097, 50879057)
文摘Considering the static stability and the change of the displacement volume, including the influences of higher order nonlinear terms and the instantaneous wave surface, the nonlinear coupled heave-pitch motion was established in stochastic waves. The responses of heave-pitch coupling motion for the Truss Spar platform were investigated. It was found that, when the characteristic frequency of a stochastic wave is close to the natural heave frequency, the large amplitude pitch motion is induced under the parametric-forced excitation, which is called the Mathieu instability. It was observed that the heave mode energy is transferred to pitch mode when the heave motion amplitude exceeds a certain extent. In addition, the probability of internal resonant heave-pitch motion is greatly reduced while the characteristic wave frequency is away from the natural heave frequency.