Magnetic tunnel junction(MTJ) based spin transfer torque magnetic random access memory(STT-MRAM) has been gaining tremendous momentum in high performance microcontroller(MCU) applications. As e Flash-replacement type ...Magnetic tunnel junction(MTJ) based spin transfer torque magnetic random access memory(STT-MRAM) has been gaining tremendous momentum in high performance microcontroller(MCU) applications. As e Flash-replacement type MRAM approaches mass production, there is an increasing demand for non-volatile RAM(nv RAM) technologies that offer fast write speed and high endurance. In this work, we demonstrate highly reliable 4 Mb nv RAM type MRAM suitable for industry and auto grade-1 applications. This nv RAM features retention over 10 years at 125 ℃, endurance of 1 × 10^(12)cycles with 20 ns write speed, making it ideal for applications requiring both high speed and broad temperature ranges. By employing innovative MTJ materials, process engineering, and a co-optimization of process and design, reliable read and write performance across the full temperature range between -40 to 125 ℃, and array yield that meets sub-1 ppm error rate was significantly improved from 0 to above 95%, a concrete step toward applications.展开更多
The non-volatile multi-level magnetic or resistance states switching is extremely promising for newgeneration high-density information storage.In this work,we propose a novel multiple-state magnetic memory based on th...The non-volatile multi-level magnetic or resistance states switching is extremely promising for newgeneration high-density information storage.In this work,we propose a novel multiple-state magnetic memory based on the magnetic deflagration in a single Laves-phase Tb_(0.95)Mn_(1.5)Co_(0.5)compound with non-volatile and multilevel magnetic states switching.In consideration of the negative magnetization,six different magnetic states are achieved by simply applying the magnetic field.The abinitio calculations and neutron diffraction measurements indicate that the studied compound is a cubic structure withferromagnetic ordering at low temperature and the evolution in magnetic states(i.e.magnetic deflagration)should arise from the Barkhausen effect.The almost unchanged magnetic state under corresponding range of magnetic field enables the magnetization to be in the same magnitude even after 50 cyclic hysteresis loops.Furthermore,the retention,repeatable switching,and non-volatile characters of multi-level magnetic state have been primely confirmed.All these suggest that the Tb_(0.95)Mn_(1.5)Co_(0.5)compound with multiple magnetic deflagrations could be applied to multiple-state magnetic memory and this work would pave the way to design a novel multi-level magnetic storage.展开更多
Single-poly,576bit non-volatile memory is designed and implemented in an SMIC 0.18μm standard CMOS process for the purpose of reducing the cost and power of passive RFID tag chips. The memory bit cell is designed wit...Single-poly,576bit non-volatile memory is designed and implemented in an SMIC 0.18μm standard CMOS process for the purpose of reducing the cost and power of passive RFID tag chips. The memory bit cell is designed with conventional single-poly pMOS transistors, based on the bi-directional Fowler-Nordheim tunneling effect, and the typical program/erase time is 10ms for every 16bits. A new ,single-ended sense amplifier is proposed to reduce the power dissipation in the current sensing scheme. The average current consumption of the whole memory chip is 0.8μA for the power supply voltage of 1.2V at a reading rate of 640kHz.展开更多
Chimonanthus plants widely distributed in southern area of China, which have a long history of edibles and medicine. Phytochemical investigations have shown that Chimonanthus produced 143 non-volatile constituents, in...Chimonanthus plants widely distributed in southern area of China, which have a long history of edibles and medicine. Phytochemical investigations have shown that Chimonanthus produced 143 non-volatile constituents, including alkaloids, flavonoids, terpenoids, coumarins and others, which exhibit significant anti-oxidant, anti-bacterial, anti-cancer, anti-inflammatory, antihyperglycemic, antihyperlipidemic and other biological activities. On the basis of systematic reviewing of literatures, this article overviews the non-volatile constituents and pharmacology of Chimonanthus from domestic and foreign over the last 30 years(until June 2018), and may provide a useful reference for the further development of Chimonanthus.展开更多
To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fer...To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production.展开更多
Shrimp sauce,one of the traditional salt-fermented food in China,has a unique flavor that is influenced by the resident microflora.The quality of salt-fermented shrimp sauce was evaluated in this work by determining t...Shrimp sauce,one of the traditional salt-fermented food in China,has a unique flavor that is influenced by the resident microflora.The quality of salt-fermented shrimp sauce was evaluated in this work by determining the total volatile basic nitrogen(TVB-N),the amino acid nitrogen(AAN),organic acid,5’-nucleotide and free amino acids(FAA).Moreover,the dynamics of microbial diversity during processing was investigated by using high-throughput sequencing technology.The results showed that the AAN,TVB-N,organic acid,5’-nucleotide and FAA content were in range of 0.93-1.42 g/100 mL,49.91-236.27 mg/100 mL,6.65-20.68 mg/mL,3.51-6.56 mg/mL and 81.27-102.90 mg/mL.Among the microbial diversity found in the shrimp sauce,Tetragenococcus,Flavobacterium,Polaribacter,Haematospirillum and Staphylococcus were the predominant genera.Correlation analysis indicated that the bacteria Tetragenococcus and Staphylococcus were important in the formation of non-volatile compounds.Tetragenococcus positively correlated with a variety of FAAs;Staphylococcus positively correlated with 5’-nucleotides.The analysis indicated that Tetragenococcus and Staphylococcus were the core genera affecting non-volatile components.These findings indicate the dynamics of the bacterial community and non-volatile components inter-relationships during shrimp sauce fermentation and provide a theoretical basis for improving the fermentation process of shrimp sauce.展开更多
OBJECTIVE:To explore the anti-inflammatory components and mechanism of the non-volatile ingredients of patchouli.METHODS:High performance liquid chromatographyheated electron spray ionization-high resolution mass spec...OBJECTIVE:To explore the anti-inflammatory components and mechanism of the non-volatile ingredients of patchouli.METHODS:High performance liquid chromatographyheated electron spray ionization-high resolution mass spectroscope(HPLC-HESI-HRMS)was used to analyze the chemical constituents of the non-volatile ingredients of patchouli.The anti-inflammatory activity of ingredients was evaluated using lipopolysaccharide(LPS)induced RAW264.7 cell inflammation model,and the antiinflammatory mechanism was investigated using multivariate statistical analysis of cell metabolomics.RESULTS:The non-volatile ingredients of patchouli were characterized by HPLC-HESI-HRMS,and 36 flavonoids and 18 other components were identified.These ingredients of patchouli not only had a good protective effect on the LPS-induced inflammation model of RAW264.7 cells,but also regulated the expression levels of arginine,L-leucine,cholesterol,fructose and sorbitol by down-regulating arginine metabolism,aminoacyl-tRNA biosynthesis,polyol/sorbitol pathway,so as to reduce inflammation and reduce cell damage.CONCLUSION:The non-volatile ingredients of patchouli had good anti-inflammatory effect and exerted its curative effect by regulating endogenous metabolic pathway to reduce inflammatory response.展开更多
Organic ferroelectric memory devices based on field effect transistors that can be configured between two stable states of on and off have been widely researched as the next generation data storage media in recent yea...Organic ferroelectric memory devices based on field effect transistors that can be configured between two stable states of on and off have been widely researched as the next generation data storage media in recent years.This emerging type of memory devices can lead to a new instrument system as a potential alternative to previous non-volatile memory building blocks in future processing units because of their numerous merits such as cost-effective process,simple structure and freedom in substrate choices.This bi-stable non-volatile memory device of information storage has been investigated using several organic or inorganic semiconductors with organic ferroelectric polymer materials.Recent progresses in this ferroelectric memory field,hybrid system have attracted a lot of attention due to their excellent device performance in comparison with that of all organic systems.In this paper,a general review of this type of ferroelectric non-volatile memory is provided,which include the device structure,organic ferroelectric materials,electrical characteristics and working principles.We also present some snapshots of our previous study on hybrid ferroelectric memories including our recent work based on zinc oxide nanowire channels.展开更多
基于系统级封装(System in a Package, SiP)技术的SRAM型FPGA微系统广泛应用于航天领域。由于微系统复杂的封装结构,限制了大多数传统失效分析设备与分析方式的应用。针对微系统器件的故障诊断困难、测试流程复杂等可靠性问题,开展了常...基于系统级封装(System in a Package, SiP)技术的SRAM型FPGA微系统广泛应用于航天领域。由于微系统复杂的封装结构,限制了大多数传统失效分析设备与分析方式的应用。针对微系统器件的故障诊断困难、测试流程复杂等可靠性问题,开展了常见故障分析研究。对SRAM配置固有缺陷和FPGA内部配置刷新电路异常等典型故障的产生机理进行了深入分析和总结。结合理论分析和问题现象,提出了配置位回读校验测试及比对、辅助电源VCC, AUX电流参数一致性控制等测试筛选方法,有效提升了测试覆盖性。利用相应测试手段和数据分析方法,可精准定位失效机理与失效部位,对后续宇航用SRAM型FPGA微系统应用及筛选有重要意义。展开更多
Non-volatile memory based on TiN nanocrystal (TiN-NC) charge storage nodes embedded in SiO2 has been fabricated and its electrical properties have been measured. It was found that the density and size distribution o...Non-volatile memory based on TiN nanocrystal (TiN-NC) charge storage nodes embedded in SiO2 has been fabricated and its electrical properties have been measured. It was found that the density and size distribution of TiN-NCs can be controlled by annealing temperature. The formation of well separated crystalline TiN nano-dots with an average size of 5 nm is confirmed by transmission electron microscopy and x-ray diffraction, x-ray photoelectron spectroscopy confirms the existence of a transition layer of TiNxOy/SiON oxide between TiN-NC and SiO2, which reduces the barrier height of tunnel oxide and thereby enhances programming/erasing speed. The memory device shows a memory window of 2.5V and an endurance cycle throughout 10^5. Its charging mechanism, which is interpreted from the analysis of programming speed (dVth/dt) and the gate leakage versus voltage characteristics (Ig vs Vg), has been explained by direct tunnelling for tunnel oxide and Fowler Nordheim tunnelling for control oxide at programming voltages lower than 9V, and by Fowler-Nordheim tunnelling for both the oxides at programming voltages higher than 9V.展开更多
The farming of Scylla paramamosain with specific flavors has a higher commercial value,and the flavors are related to the integrated farming environment and non-volatile flavor substances,while the survival environmen...The farming of Scylla paramamosain with specific flavors has a higher commercial value,and the flavors are related to the integrated farming environment and non-volatile flavor substances,while the survival environment is one of the important ways to source gut microorganisms in the organism.In this study,the levels of dominant taxa in the gut flora of S.paramamosain from Mong Cai,Vietnam(VN),Taishan City,Guangdong Province(TS)of China,and Ninghai County,Ningbo City(NB)Zhejiang Province of China converged with those of S.paramamosain from Sanmen County,Ningbo City(CK 1,CK 2,and CK 3)at 28 d of domestication.The top 15 genera with the highest abundance of VN,TS,and NB gut flora were the same as CK 1,CK 2,and CK 3,but with different percentages,and gradually converged to CK 1,CK 2,and CK 3,respectively,at 28 d of domestication.Correlation between intestinal flora and non-volatile flavor substances in the hepatopancreas at the percentage level of relative abundance of bacterial genera found that above 28 d of domestication,Muribaculaceae,Psychrilyobacter,Clostridia_vadinBB 60_group,Halarcobacter Carboxylicivirga,Sediminispirochaeta may be the most important genera affecting flavor amino acids of VN.Sediminispirochaeta,Carboxylicivirga,Halarcobacter,Photobacterium,ZOR 0006,Psychrilyobacter,and Pseudomonas may be the most important genera affecting flavor amino acids of NB.Sediminispirochaeta,Carboxylicivirga,Halarcobacter,Photobacterium,ZOR 0006,Vibrio,and Sphingomonas may be the most important genera affecting flavor amino acids of TS.These results show that the intestinal flora structure of crabs from different areas were domesticated in the same area for at least 28 d before they converged to that of the domesticated crab,and the most important genera affecting the flavor amino acids of TS,VN,and NB were also identified.The results of this study provide a reference and basis for the technique of directional cultivation of the flavor quality of the crab.展开更多
We design a nanostructure composing of two nanoscale graphene sheets parallelly immersed in water.Using molecular dynamics simulations,we demonstrate that the wet/dry state between the graphene sheets can be self-latc...We design a nanostructure composing of two nanoscale graphene sheets parallelly immersed in water.Using molecular dynamics simulations,we demonstrate that the wet/dry state between the graphene sheets can be self-latched;moreover,the wet→dry/dry→wet transition takes place when applying an external electric field perpendicular/parallel to the graphene sheets(E;/E;).This structure works like a flash memory device(a non-volatile memory):the stored information(wet and dry states)of the system can be kept spontaneously,and can also be rewritten by external electric fields.On the one hand,when the distance between the two nanosheets is close to a certain distance,the free energy barriers for the transitions dry→wet and wet→dry can be quite large.As a result,the wet and dry states are self-latched.On the other hand,an E;and an E;will respectively increase and decrease the free energy of the water located in-between the two nanosheets.Consequently,the wet→dry and dry→wet transitions are observed.Our results may be useful for designing novel information memory devices.展开更多
The aerial parts of Mosla chinensis Maxim.and Mosla chinensis cv.'Jiangxiangru'(MCJ)are widely utilized in traditional Chinese medicine(TCM),known collectively as Xiang-ru.However,due to clinical effectiveness...The aerial parts of Mosla chinensis Maxim.and Mosla chinensis cv.'Jiangxiangru'(MCJ)are widely utilized in traditional Chinese medicine(TCM),known collectively as Xiang-ru.However,due to clinical effectiveness concerns and frequent misidentification,the original plants have increasingly been substituted by various species within the genera Elsholtzia and Mosla.The challenge in distinguishing between these genera arises from their similar morphological and metabolic profiles.To address this issue,our study introduced a rapid method for metabolic characterization,employing high-resolution mass spectrometry-based metabolomics.Through detailed biosynthetic and chemometric analyses,we pinpointed five phenolic compounds—salviaflaside,cynaroside,scutellarein-7-O-D-glucoside,rutin,and vicenin-2—among 203 identified compounds,as reliable chemical markers for distinguishing Xiang-ru from closely related Elsholtzia species.This methodology holds promise for broad application in the analysis of plant aerial parts,especially in verifying the authenticity of aromatic traditional medicinal plants.Our findings underscore the importance of non-volatile compounds as dependable chemical markers in the authentication process of aromatic traditional medicinal plants.展开更多
Low power consumption is a major issue in nowadays electronics systems. This trend is pushed by the development of data center related to cloud services and soon to the Internet of Things (IoT) deployment. Memories ...Low power consumption is a major issue in nowadays electronics systems. This trend is pushed by the development of data center related to cloud services and soon to the Internet of Things (IoT) deployment. Memories are one of the major contributors to power consumption. However, the development of emerging memory technologies paves the way to low-power design, through the partial replacement of the dynamic random access memory (DRAM) with the non-volatile stand-alone memory in servers or with the embedded or distributed emerging non-volatile memory in IoT objects. In the latter case, non-volatile flip-flops (NVFFs) seem a promising candidate to replace the retention latch. Indeed, IoT objects present long sleep time and NVFFs offer to save data in registers with zero power when the application is idle. This paper gives an overview of NVFF architecture flavors for various emerging memory technologies.展开更多
基金supported by National Science and Technology Major Project (2020AAA0109003)the support from Hangzhou Innovation Team Program (TD2022018)。
文摘Magnetic tunnel junction(MTJ) based spin transfer torque magnetic random access memory(STT-MRAM) has been gaining tremendous momentum in high performance microcontroller(MCU) applications. As e Flash-replacement type MRAM approaches mass production, there is an increasing demand for non-volatile RAM(nv RAM) technologies that offer fast write speed and high endurance. In this work, we demonstrate highly reliable 4 Mb nv RAM type MRAM suitable for industry and auto grade-1 applications. This nv RAM features retention over 10 years at 125 ℃, endurance of 1 × 10^(12)cycles with 20 ns write speed, making it ideal for applications requiring both high speed and broad temperature ranges. By employing innovative MTJ materials, process engineering, and a co-optimization of process and design, reliable read and write performance across the full temperature range between -40 to 125 ℃, and array yield that meets sub-1 ppm error rate was significantly improved from 0 to above 95%, a concrete step toward applications.
基金financially supported by the National Natural Science Foundation of China(No.52061014)the Natural Science Foundation of Henan Province(No.242300420352)+4 种基金the Key research and development program of Henan province(No.231111222200)the Key Scientific Research Projects of Higher Education Institutions in Henan Province(No.25CY025)the Leading Talents Program of Jiangxi Provincial Major Discipline Academic and Technical Leaders Training Program(No.20204BCJ22004)the Open Project awarded by Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials(No.QMNEM2002)Jiangxi Provincial Key Laboratory of Magnetic Metallic Materials and Devices(No.2024SSY05061)
文摘The non-volatile multi-level magnetic or resistance states switching is extremely promising for newgeneration high-density information storage.In this work,we propose a novel multiple-state magnetic memory based on the magnetic deflagration in a single Laves-phase Tb_(0.95)Mn_(1.5)Co_(0.5)compound with non-volatile and multilevel magnetic states switching.In consideration of the negative magnetization,six different magnetic states are achieved by simply applying the magnetic field.The abinitio calculations and neutron diffraction measurements indicate that the studied compound is a cubic structure withferromagnetic ordering at low temperature and the evolution in magnetic states(i.e.magnetic deflagration)should arise from the Barkhausen effect.The almost unchanged magnetic state under corresponding range of magnetic field enables the magnetization to be in the same magnitude even after 50 cyclic hysteresis loops.Furthermore,the retention,repeatable switching,and non-volatile characters of multi-level magnetic state have been primely confirmed.All these suggest that the Tb_(0.95)Mn_(1.5)Co_(0.5)compound with multiple magnetic deflagrations could be applied to multiple-state magnetic memory and this work would pave the way to design a novel multi-level magnetic storage.
文摘Single-poly,576bit non-volatile memory is designed and implemented in an SMIC 0.18μm standard CMOS process for the purpose of reducing the cost and power of passive RFID tag chips. The memory bit cell is designed with conventional single-poly pMOS transistors, based on the bi-directional Fowler-Nordheim tunneling effect, and the typical program/erase time is 10ms for every 16bits. A new ,single-ended sense amplifier is proposed to reduce the power dissipation in the current sensing scheme. The average current consumption of the whole memory chip is 0.8μA for the power supply voltage of 1.2V at a reading rate of 640kHz.
基金supported by the National Natural Science Foundation of China(No.81360631)
文摘Chimonanthus plants widely distributed in southern area of China, which have a long history of edibles and medicine. Phytochemical investigations have shown that Chimonanthus produced 143 non-volatile constituents, including alkaloids, flavonoids, terpenoids, coumarins and others, which exhibit significant anti-oxidant, anti-bacterial, anti-cancer, anti-inflammatory, antihyperglycemic, antihyperlipidemic and other biological activities. On the basis of systematic reviewing of literatures, this article overviews the non-volatile constituents and pharmacology of Chimonanthus from domestic and foreign over the last 30 years(until June 2018), and may provide a useful reference for the further development of Chimonanthus.
基金supported by Special key project of technological innovation and application development in Yongchuan District,Chongqing(2021yc-cxfz20002)the special funds of central government for guiding local science and technology developmentthe funds for the platform projects of professional technology innovation(CSTC2018ZYCXPT0006).
文摘To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production.
基金support from the National Key R&D Program of China (2019YFD0901903)the Innovation Team Project of Hebei (Province) Modern Agricultural Industry Technology System (HBCT2018170207)the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX20_1426)
文摘Shrimp sauce,one of the traditional salt-fermented food in China,has a unique flavor that is influenced by the resident microflora.The quality of salt-fermented shrimp sauce was evaluated in this work by determining the total volatile basic nitrogen(TVB-N),the amino acid nitrogen(AAN),organic acid,5’-nucleotide and free amino acids(FAA).Moreover,the dynamics of microbial diversity during processing was investigated by using high-throughput sequencing technology.The results showed that the AAN,TVB-N,organic acid,5’-nucleotide and FAA content were in range of 0.93-1.42 g/100 mL,49.91-236.27 mg/100 mL,6.65-20.68 mg/mL,3.51-6.56 mg/mL and 81.27-102.90 mg/mL.Among the microbial diversity found in the shrimp sauce,Tetragenococcus,Flavobacterium,Polaribacter,Haematospirillum and Staphylococcus were the predominant genera.Correlation analysis indicated that the bacteria Tetragenococcus and Staphylococcus were important in the formation of non-volatile compounds.Tetragenococcus positively correlated with a variety of FAAs;Staphylococcus positively correlated with 5’-nucleotides.The analysis indicated that Tetragenococcus and Staphylococcus were the core genera affecting non-volatile components.These findings indicate the dynamics of the bacterial community and non-volatile components inter-relationships during shrimp sauce fermentation and provide a theoretical basis for improving the fermentation process of shrimp sauce.
基金Institute of Chinese Medicine Discipline Construction Project of National Institutes for Food and Drug Control:Disciplinary Construction Program of Chinese Medicine Institute of NIFDC(No.1020050090116)Training Fund for Academic Leaders of NIFDC(No.2023X10)Program of State Drug Administraion-Key Laboratory of Quality Control of Chinese Medicinal Materials and Decoction Pieces(No.2022GSMPA-KL02)。
文摘OBJECTIVE:To explore the anti-inflammatory components and mechanism of the non-volatile ingredients of patchouli.METHODS:High performance liquid chromatographyheated electron spray ionization-high resolution mass spectroscope(HPLC-HESI-HRMS)was used to analyze the chemical constituents of the non-volatile ingredients of patchouli.The anti-inflammatory activity of ingredients was evaluated using lipopolysaccharide(LPS)induced RAW264.7 cell inflammation model,and the antiinflammatory mechanism was investigated using multivariate statistical analysis of cell metabolomics.RESULTS:The non-volatile ingredients of patchouli were characterized by HPLC-HESI-HRMS,and 36 flavonoids and 18 other components were identified.These ingredients of patchouli not only had a good protective effect on the LPS-induced inflammation model of RAW264.7 cells,but also regulated the expression levels of arginine,L-leucine,cholesterol,fructose and sorbitol by down-regulating arginine metabolism,aminoacyl-tRNA biosynthesis,polyol/sorbitol pathway,so as to reduce inflammation and reduce cell damage.CONCLUSION:The non-volatile ingredients of patchouli had good anti-inflammatory effect and exerted its curative effect by regulating endogenous metabolic pathway to reduce inflammatory response.
文摘Organic ferroelectric memory devices based on field effect transistors that can be configured between two stable states of on and off have been widely researched as the next generation data storage media in recent years.This emerging type of memory devices can lead to a new instrument system as a potential alternative to previous non-volatile memory building blocks in future processing units because of their numerous merits such as cost-effective process,simple structure and freedom in substrate choices.This bi-stable non-volatile memory device of information storage has been investigated using several organic or inorganic semiconductors with organic ferroelectric polymer materials.Recent progresses in this ferroelectric memory field,hybrid system have attracted a lot of attention due to their excellent device performance in comparison with that of all organic systems.In this paper,a general review of this type of ferroelectric non-volatile memory is provided,which include the device structure,organic ferroelectric materials,electrical characteristics and working principles.We also present some snapshots of our previous study on hybrid ferroelectric memories including our recent work based on zinc oxide nanowire channels.
文摘基于系统级封装(System in a Package, SiP)技术的SRAM型FPGA微系统广泛应用于航天领域。由于微系统复杂的封装结构,限制了大多数传统失效分析设备与分析方式的应用。针对微系统器件的故障诊断困难、测试流程复杂等可靠性问题,开展了常见故障分析研究。对SRAM配置固有缺陷和FPGA内部配置刷新电路异常等典型故障的产生机理进行了深入分析和总结。结合理论分析和问题现象,提出了配置位回读校验测试及比对、辅助电源VCC, AUX电流参数一致性控制等测试筛选方法,有效提升了测试覆盖性。利用相应测试手段和数据分析方法,可精准定位失效机理与失效部位,对后续宇航用SRAM型FPGA微系统应用及筛选有重要意义。
文摘Non-volatile memory based on TiN nanocrystal (TiN-NC) charge storage nodes embedded in SiO2 has been fabricated and its electrical properties have been measured. It was found that the density and size distribution of TiN-NCs can be controlled by annealing temperature. The formation of well separated crystalline TiN nano-dots with an average size of 5 nm is confirmed by transmission electron microscopy and x-ray diffraction, x-ray photoelectron spectroscopy confirms the existence of a transition layer of TiNxOy/SiON oxide between TiN-NC and SiO2, which reduces the barrier height of tunnel oxide and thereby enhances programming/erasing speed. The memory device shows a memory window of 2.5V and an endurance cycle throughout 10^5. Its charging mechanism, which is interpreted from the analysis of programming speed (dVth/dt) and the gate leakage versus voltage characteristics (Ig vs Vg), has been explained by direct tunnelling for tunnel oxide and Fowler Nordheim tunnelling for control oxide at programming voltages lower than 9V, and by Fowler-Nordheim tunnelling for both the oxides at programming voltages higher than 9V.
基金Supported by the National Natural Science Foundation of China(No.42276106)the Youth Science and Technology Innovation Leading Talent Project of Ningbo City(No.2023QL038)+4 种基金the Public Welfare Research Project of Ningbo(No.2023S114)the“Three Rural Issues,Nine Parties”Agricultural Science and Technology Collaboration Plan of Zhejiang Province(No.2024SNJF073)the earmarked fund for CARS(No.CARS 48)the Major Scientific and Technological Innovation Project of Wenzhou City(No.ZF2022008)the K.C.Wong Magna Fund in Ningbo University。
文摘The farming of Scylla paramamosain with specific flavors has a higher commercial value,and the flavors are related to the integrated farming environment and non-volatile flavor substances,while the survival environment is one of the important ways to source gut microorganisms in the organism.In this study,the levels of dominant taxa in the gut flora of S.paramamosain from Mong Cai,Vietnam(VN),Taishan City,Guangdong Province(TS)of China,and Ninghai County,Ningbo City(NB)Zhejiang Province of China converged with those of S.paramamosain from Sanmen County,Ningbo City(CK 1,CK 2,and CK 3)at 28 d of domestication.The top 15 genera with the highest abundance of VN,TS,and NB gut flora were the same as CK 1,CK 2,and CK 3,but with different percentages,and gradually converged to CK 1,CK 2,and CK 3,respectively,at 28 d of domestication.Correlation between intestinal flora and non-volatile flavor substances in the hepatopancreas at the percentage level of relative abundance of bacterial genera found that above 28 d of domestication,Muribaculaceae,Psychrilyobacter,Clostridia_vadinBB 60_group,Halarcobacter Carboxylicivirga,Sediminispirochaeta may be the most important genera affecting flavor amino acids of VN.Sediminispirochaeta,Carboxylicivirga,Halarcobacter,Photobacterium,ZOR 0006,Psychrilyobacter,and Pseudomonas may be the most important genera affecting flavor amino acids of NB.Sediminispirochaeta,Carboxylicivirga,Halarcobacter,Photobacterium,ZOR 0006,Vibrio,and Sphingomonas may be the most important genera affecting flavor amino acids of TS.These results show that the intestinal flora structure of crabs from different areas were domesticated in the same area for at least 28 d before they converged to that of the domesticated crab,and the most important genera affecting the flavor amino acids of TS,VN,and NB were also identified.The results of this study provide a reference and basis for the technique of directional cultivation of the flavor quality of the crab.
基金supported by the National Natural Science Foundation of China(Grant No.11704328)。
文摘We design a nanostructure composing of two nanoscale graphene sheets parallelly immersed in water.Using molecular dynamics simulations,we demonstrate that the wet/dry state between the graphene sheets can be self-latched;moreover,the wet→dry/dry→wet transition takes place when applying an external electric field perpendicular/parallel to the graphene sheets(E;/E;).This structure works like a flash memory device(a non-volatile memory):the stored information(wet and dry states)of the system can be kept spontaneously,and can also be rewritten by external electric fields.On the one hand,when the distance between the two nanosheets is close to a certain distance,the free energy barriers for the transitions dry→wet and wet→dry can be quite large.As a result,the wet and dry states are self-latched.On the other hand,an E;and an E;will respectively increase and decrease the free energy of the water located in-between the two nanosheets.Consequently,the wet→dry and dry→wet transitions are observed.Our results may be useful for designing novel information memory devices.
基金supported by the National Key R&D Program of China(No.2022YFC3501700)the Young Elite Scientists Sponsorship Program by Cast(No.2021-QNRC1-02)+1 种基金the Key Project at Central Government Level:The Ability Establishment of Sustainable Use for Valuable Chinese Medicine Resources(No.2060302)the Research Project of Science and Technology Commission of Shanghai Municipalit(No.21DZ2202300)。
文摘The aerial parts of Mosla chinensis Maxim.and Mosla chinensis cv.'Jiangxiangru'(MCJ)are widely utilized in traditional Chinese medicine(TCM),known collectively as Xiang-ru.However,due to clinical effectiveness concerns and frequent misidentification,the original plants have increasingly been substituted by various species within the genera Elsholtzia and Mosla.The challenge in distinguishing between these genera arises from their similar morphological and metabolic profiles.To address this issue,our study introduced a rapid method for metabolic characterization,employing high-resolution mass spectrometry-based metabolomics.Through detailed biosynthetic and chemometric analyses,we pinpointed five phenolic compounds—salviaflaside,cynaroside,scutellarein-7-O-D-glucoside,rutin,and vicenin-2—among 203 identified compounds,as reliable chemical markers for distinguishing Xiang-ru from closely related Elsholtzia species.This methodology holds promise for broad application in the analysis of plant aerial parts,especially in verifying the authenticity of aromatic traditional medicinal plants.Our findings underscore the importance of non-volatile compounds as dependable chemical markers in the authentication process of aromatic traditional medicinal plants.
基金supported by the ANR project DIPMEM under Grant No.ANR-12-NANO-0010-04
文摘Low power consumption is a major issue in nowadays electronics systems. This trend is pushed by the development of data center related to cloud services and soon to the Internet of Things (IoT) deployment. Memories are one of the major contributors to power consumption. However, the development of emerging memory technologies paves the way to low-power design, through the partial replacement of the dynamic random access memory (DRAM) with the non-volatile stand-alone memory in servers or with the embedded or distributed emerging non-volatile memory in IoT objects. In the latter case, non-volatile flip-flops (NVFFs) seem a promising candidate to replace the retention latch. Indeed, IoT objects present long sleep time and NVFFs offer to save data in registers with zero power when the application is idle. This paper gives an overview of NVFF architecture flavors for various emerging memory technologies.