期刊文献+
共找到58,045篇文章
< 1 2 250 >
每页显示 20 50 100
Research progress on metal-support interactions over Ni-based catalysts for CH_(4)-CO_(2)reforming reaction
1
作者 SUN Kai JIANG Jianfei +4 位作者 LIU Zixuan GENG Shiqi LIU Zhenmin YANG Jiaqian LI Shasha 《燃料化学学报(中英文)》 北大核心 2025年第4期434-451,共18页
With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Ni... With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies. 展开更多
关键词 CO_(2)utilization CH_(4)-CO_(2)reforming ni-based catalysts metal-support interactions supports
在线阅读 下载PDF
Carbon diffusion mechanism as an effective stability enhancement strategy:The case study of Ni-based catalyst for photothermal catalytic dry reforming of methane
2
作者 Dezheng Li Huimin Liu +3 位作者 Xuewen Xiao Manqi Zhao Dehua He Yiming Lei 《Chinese Journal of Catalysis》 2025年第3期399-409,共11页
Photothermal catalytic methane dry reforming(DRM)technology can convert greenhouse gases(i.e.CH_(4)and CO_(2))into syngas(i.e.H_(2)and CO),providing more opportunities for reducing the greenhouse effect and achieving ... Photothermal catalytic methane dry reforming(DRM)technology can convert greenhouse gases(i.e.CH_(4)and CO_(2))into syngas(i.e.H_(2)and CO),providing more opportunities for reducing the greenhouse effect and achieving carbon neutrality.In the DRM field,Ni-based catalysts attract wide attention due to their low cost and high activity.However,the carbon deposition over Ni-based catalysts always leads to rapid deactivation,which is still a main challenge.To improve the long-term stability of Ni-based catalysts,this work proposes a carbon-atom-diffusion strategy under photothermal conditions and investigates its effect on a Zn-doped Ni-based photothermal catalyst(Ni_(3)Zn@CeO_(2)).The photothermal catalytic behavior of Ni_(3)Zn@CeO_(2)can maintain more than 70 h in DRM reaction.And the photocatalytic DRM activity of Ni_(3)Zn@CeO_(2)is 1.2 times higher than thermal catalytic activity.Density functional theory(DFT)calculation and experimental characterizations indicate that Ni_(3)Zn promotes the diffusion of carbon atoms into the Ni_(3)Zn to form the Ni_(3)ZnC0.7 phase with body-centered cubic(bcc)structure,thus inhibiting carbon deposition.Further,in-situ diffuse reflectance infrared Fourier transform(DRIFT)spectroscopy and DFT calculation prove Ni_(3)Zn@CeO_(2)benefits the CH_(4)activation and inhibits the carbon deposition during the DRM process.Through inducing carbon atoms diffusion within the Ni_(3)Zn lattice,this work provides a straightforward and feasible strategy for achieving efficient photothermal catalytic DRM and even other CH_(4)conversion implementations with long-term stability. 展开更多
关键词 Photothermal catalysis Methane dry reforming ni-based catalyst Stability enhancement Carbon atom diffusion
在线阅读 下载PDF
Exploring Ni-based alkaline OER catalysts:A comprehensive review of structures,performance,and in situ characterization methods
3
作者 Zhanhong Xiao Xiaosheng Tang +2 位作者 Feng Gao Junmin Xue Xiaopeng Wang 《DeCarbon》 2025年第1期23-38,共16页
Nickel-based catalysts have emerged as crucial components in alkaline oxygen evolution reactions(OER)due to their exceptional catalytic performance and unique structural properties.However,the understanding of their c... Nickel-based catalysts have emerged as crucial components in alkaline oxygen evolution reactions(OER)due to their exceptional catalytic performance and unique structural properties.However,the understanding of their catalytic mechanisms remains incomplete.This review systematically explores the various types of Ni-based catalysts,including metal-organic frameworks(MOFs),perovskites,and layered double hydroxides(LDHs),while emphasizing their performance metrics.We critically assess the application of advanced in situ characterization techniques,such as in situ Raman spectroscopy and X-ray absorption spectroscopy(XAS),in elucidating the structural evolution and active species during the OER process.By addressing the interplay between catalyst structure and performance,this review aims to provide insights that drive future research efforts toward the optimization of Ni-based catalysts for sustainable hydrogen production.Key areas for potential research advancements are also identified. 展开更多
关键词 ELECTROCATALYSIS Oxygen evolution reaction ni-based catalysts In situ characterization
在线阅读 下载PDF
Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation 被引量:1
4
作者 Haixu Li Haobo He +7 位作者 Tiannan Jiang Yunfei Du Zhichen Wu Liang Xu Xinjie Wang Xiaoguang Liu Wanhua Yu Wendong Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期169-181,共13页
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB... S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB. 展开更多
关键词 advanced oxidation process alcohol solvent evaporation hydrogen bond S and Co co-doped carbon catalysts wastewater remediation
在线阅读 下载PDF
Exploring catalyst developments in heterogeneous CO_(2) hydrogenation to methanol and ethanol:A journey through reaction pathways 被引量:1
5
作者 Rasoul Salami Yimin Zeng +2 位作者 Xue Han Sohrab Rohani Ying Zheng 《Journal of Energy Chemistry》 2025年第2期345-384,I0008,共41页
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation... The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts. 展开更多
关键词 CO_(2)hydrogenation METHANOL ETHANOL Catalytic mechanism Operando techniques Single atom catalyst Tandem catalyst
在线阅读 下载PDF
Highly dispersed MoO_(x)-Ru/C bimetallic catalyst for efficient hydrogenolysis of esters to alkanes 被引量:1
6
作者 Xincheng Cao Jiaping Zhao +5 位作者 Feng Long Peng Liu Yuguo Dong Zupeng Chen Junming Xu Jianchun Jiang 《Chinese Journal of Catalysis》 2025年第4期256-266,共11页
The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction tempera... The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction temperature(>250℃)is the prerequisite to ensure high conversion of esters.Here,we report a highly dispersed MoO_(x)-Ru/C bimetallic catalyst for the efficient hydrogenolysis of esters to alkanes under 150°C.The optimal catalyst exhibits>99%conversion of methyl stearate and 99%selectivity to diesel-range alkanes,reaching a high rate of up to 2.0 mmol gcat^(–1)h^(–1),5 times higher than that of Ru/C catalyst(MoO_(x)/C is inert).Integrated experimental and theoretical investigations attribute the high performance to the abundant MoO_(x)-Ru interfacial sites on the catalyst surface,which offers high activity for the C–O cleavage of esters.Furthermore,the dispersed MoO_(x)species significantly weaken the hydrocracking activity of the metallic Ru for C–C bonds,thus yielding alkane products without carbon loss.This study provides a facile and novel strategy for the design of high-performance heterogeneous catalysts for the hydrodeoxygenation of biomass-derived esters to alkane products. 展开更多
关键词 Bimetallic catalyst Interface engineering HYDRODEOXYGENATION Fatty esters Diesel-range alkanes
在线阅读 下载PDF
Catalytic Performance of Carbon Smoke over Ag-LSCF Composite Catalysts
7
作者 GUO Guanlun HAN Ming +3 位作者 LU Shaomin YU Jing JU Hongling 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期30-34,共5页
To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of cha... To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of characterization tests and evaluated the soot catalytic activity of the composite catalyst by comparing it with the LaCoO_(3) group,LaFeO_(3) group,and catalyst-free group.The results indicate that the Ag-LSCF composite catalyst exhibits the highest soot catalytic activity,with the characteristic temperature values of 376.3,431.1,and 473.9℃at 10%,50%,and 90%carbon soot conversion,respectively.These values are 24.8,20.2,and 23.1℃lower than those of the LSCF group.This also shows that LSCF can improve the catalytic activity of soot after compounding with Ag,and reflects the necessity of using catalysts in soot combustion reaction.XPS characterization and BET test show that Ag-LSCF has more abundant surface-adsorbed oxygen species,larger specific surface area and pore volume than LSCF,which also proves that Ag-LSCF has higher soot catalytic activity. 展开更多
关键词 metallic composites carbon smoke oxidation perovskite catalyst SOOT
原文传递
Effect of Withdrawal Rate on Non-uniform Distribution of Eutectic in Ni-based Single Crystal Superalloy Castings
8
作者 Zhao Yunxing Yu Jingyi +1 位作者 Ma Dexin Huang Zaiwang 《稀有金属材料与工程》 北大核心 2025年第8期1934-1939,共6页
The microstructure of single crystal superalloy is relatively simple,consisting primarily ofγdendrites andγ/γ′eutectics.During the directional solidification process of Ni-based single crystal superalloys,withdraw... The microstructure of single crystal superalloy is relatively simple,consisting primarily ofγdendrites andγ/γ′eutectics.During the directional solidification process of Ni-based single crystal superalloys,withdrawal rate is a critical parameter affecting the spatial distribution ofγ/γ′eutectic along gravity direction.The results show that theγ/γ′eutectic fraction of the upper platform surface is always higher than that of the lower one,regardless of withdrawal rate.As the withdrawal rate decreases,there is a significant increase inγ/γ′eutectic fraction on the upper surface,while it decreases on the lower surface.The upward accumulation ofγ/γ′eutectic becomes more severe as the withdrawal rate decreases.It is also found that the percentage of Al+Ta is positively correlated with theγ/γ′eutectic fraction.Thermo-solute convection of Al and Ta solutes in the solidification front is the prime reason for the non-uniform distribution of eutectic.The non-uniform distribution ofγ/γ′eutectic cannot be eliminated even after subsequent solution heat treatment,resulting in excess eutectic on the upper surface and thus leading to the scrapping of the blade. 展开更多
关键词 ni-based single crystal superalloy EUTECTICS withdrawal rate thermo-solute convection
原文传递
Biomass-derived single atom catalysts with phosphorus-coordinated Fe-N_(3)P configuration for efficient oxygen reduction reaction 被引量:1
9
作者 Peng-Peng Guo Abrar Qadir +6 位作者 Chao Xu Kun-Zu Yang Yong-Zhi Su Xin Liu Ping-Jie Wei Qinggang He Jin-Gang Liu 《Green Energy & Environment》 2025年第5期1064-1072,共9页
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform... Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion. 展开更多
关键词 Oxygen reduction reaction Biomass-derived electrocatalyst Single atom catalyst Phosphorus dopant Zn-air battery
在线阅读 下载PDF
Promotion effect of Ce and Ta co-doping on the NH_(3)-SCR performance over V_(2)O_(5)/TiO_(2)catalyst 被引量:1
10
作者 Long Liu Xin Shen +4 位作者 Zhihua Lian Chunxi Lin Ying Zhu Wenpo Shan Hong He 《Journal of Environmental Sciences》 2025年第4期332-339,共8页
NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.A... NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.An innovative V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst for NO_(x)removal was prepared in this study.The influences of Ce and Ta in the V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst on the SCR performance and physicochemical properties were investigated.The V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst not only exhibited excellent SCR activity in a wide temperature window,but also presented strong resistance to H_(2)Oand SO_(2)at 275◦C.A series of characterizationmethods was used to study the catalysts,including H2-temperature programmed reduction,X-ray photoelectron spectroscopy,NH_(3)-temperature programmed desorption,etc.It was discovered that a synergistic effect existed between Ce and Ta species.The introduction of Ce and Ta enlarged the specific surface area,increased the amount of acid sites and the ratio of Ce^(3+),(V^(3+)+V^(4+))and Oα,and strengthened the redox capability which were related to synergistic effect between Ce and Ta species,significantly improving the NH_(3)-SCR activity. 展开更多
关键词 NH_(3)-SCR Vanadia-based catalysts Synergistic effect CO-DOPING Low temperature
原文传递
Catalyst–Support Interaction in Polyaniline‑Supported Ni_(3)Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn‑Air Batteries
11
作者 Xiaohong Zou Qian Lu +8 位作者 Mingcong Tang Jie Wu Kouer Zhang Wenzhi Li Yunxia Hu Xiaomin Xu Xiao Zhang Zongping Shao Liang An 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期176-190,共15页
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3... Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts. 展开更多
关键词 catalyst-support interaction Supported catalysts HETEROINTERFACE Oxygen evolution reaction Zn-air batteries
在线阅读 下载PDF
Microstructure Evolution and Deformation Mechanism of DZ125 Ni-based Superalloy During High-Temperature Creep
12
作者 Li Yongxiang Tian Ning +3 位作者 Zhang Ping Zhang Shunke Yan Huajin Zhao Guoqi 《稀有金属材料与工程》 北大核心 2025年第7期1733-1740,共8页
The microstructure evolution and deformation mechanism of a DZ125 superalloy during high-temperature creep were studied by means of microstructure observation and creep-property tests.The results show that at the init... The microstructure evolution and deformation mechanism of a DZ125 superalloy during high-temperature creep were studied by means of microstructure observation and creep-property tests.The results show that at the initial stage of high-temperature creep,two sets of dislocations with different Burgers vectors move and meet inγmatrix channels,and react to form a quadrilateral dislocation network.Andγ′phases with raft-like microstructure are generated after the formation of dislocation networks.As creep progresses,the quadrilateral dislocation network is gradually transformed into hexagonal and quadrilateral dislocation networks.During steady stage of creep,the superalloy undergoes deformation with the mechanism that a great number of dislocations slip and climb in the matrix across the raft-likeγ′phases.At the later stage of creep,the raft-likeγ′phases are sheared by dislocations at the breakage of dislocation networks,and then alternate slip occurs,which distorts and breaks the raft-likeγ′/γphases,resulting in the accumulation of micropores at the raft-likeγ′/γinterfaces and the formation of microcracks.As creep continues,the microcracks continue to expand until creep fracture occurs,which is the damage and fracture mechanism of the alloy at the later stage of creep at high temperature. 展开更多
关键词 DZ125 ni-based superalloy CREEP dislocation network deformation mechanism microstructure evolution
原文传递
Boosting Oxygen Evolution Reaction Performance on NiFe‑Based Catalysts Through d‑Orbital Hybridization
13
作者 Xing Wang Wei Pi +3 位作者 Sheng Hu Haifeng Bao Na Yao Wei Luo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期281-292,共12页
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int... Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h. 展开更多
关键词 NiFe-based catalysts d-orbital coupling Oxygen evolution reaction Anion exchange membrane electrolyzer
在线阅读 下载PDF
Research progress of catalysts for synthesis of glycerol carbonate form glycerol and urea
14
作者 WANG Yuhua LI Hongguang +3 位作者 DING Liang KOU Yongli QI Wenbo ZHAO Ning 《燃料化学学报(中英文)》 北大核心 2025年第6期964-982,共19页
Transformation of urea and glycerol to glycerol carbonate is an environmental friendly and economical process.Catalysts play an indispensable role in the process.Although many catalysts have been developed,the perform... Transformation of urea and glycerol to glycerol carbonate is an environmental friendly and economical process.Catalysts play an indispensable role in the process.Although many catalysts have been developed,the performance of the catalysts still cannot meet the needs of industrialization.In this paper,research progress of the homogeneous and heterogeneous catalysts of the reaction over the past 20 years were reviewed systematically.According to the types and active centers of catalysts,the catalysts were classified systematically and analyzed in detail.The typical reaction mechanisms were also summarized.The research and development direction of catalysts is made more explicit through systematic classification and mechanism analysis.The article reveals more novel catalysts have been designed and used for the reaction,such as mixed metal oxides with special structures,solid wastes and non-metallic materials.This work summarized the current state of research and prospected possible routes for design of novel catalysts.It is hoped that this review can provide some references for developing efficient catalysts. 展开更多
关键词 glycerol carbonate GLYCEROL UREA catalystS
在线阅读 下载PDF
High Fe‑Loading Single‑Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy
15
作者 Si Chen Fang Huang +5 位作者 Lijie Mao Zhimin Zhang Han Lin Qixin Yan Xiangyu Lu Jianlin Shi 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期187-203,共17页
The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs ... The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron.The constructed iron SACs(h^(3)-FNC)with a high metal loading of 6.27 wt%and an optimized adjacent Fe distance of~4 A exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects.Attractively,a“density effect”has been found at a high-enough metal doping amount,at which individual active sites become close enough to interact with each other and alter the electronic structure,resulting in significantly boosted intrinsic activity of single-atomic iron sites in h^(3)-FNCs by 2.3 times compared to low-and medium-loading SACs.Consequently,the overall catalytic activity of h^(3)-FNC is highly improved,with mass activity and metal mass-specific activity that are,respectively,66 and 315 times higher than those of commercial Pt/C.In addition,h^(3)-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion(O_(2)·^(−))and glutathione(GSH)depletion.Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h^(3)-FNCs in promoting wound healing.This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections. 展开更多
关键词 Nanocatalytic medicine Single-atom catalysts Reactive oxygen species(ROS) High metal loading Oxidase catalysis
在线阅读 下载PDF
An unexpected reversal:The smart performance of hydrogen chloride on SbCe catalysts for NH3-SCR reaction 被引量:1
16
作者 Caixia Liu Chaojun Huang +10 位作者 Baiyu Fan Yan Zhang Lijing Fang Yuhe Wang Qingling Liu Weichao Wang Yanguo Chen Yawei Zhang Jiancheng Liu Fang Dong Ziyin Zhang 《Chinese Journal of Catalysis》 2025年第1期376-385,共10页
Understanding the influence of HCl on the NH_(3)-selective catalytic reduction reaction mechanism is crucial for designing highly efficient denitrification catalysts.The formation of chlorate species on the surface of... Understanding the influence of HCl on the NH_(3)-selective catalytic reduction reaction mechanism is crucial for designing highly efficient denitrification catalysts.The formation of chlorate species on the surface of the synthesized SbCeO_(x)catalyst,induced by HCl,significantly enhances low-temperature activity,as evidenced by a 30%increase in NO conversion at 155℃.Furthermore,it improves N_(2)selectivity at high temperatures,with a notable 17%increase observed at 405℃.Both experimental results and density functional theory calculations confirm that chlorate species form at Ce sites.This formation facilitates the creation of oxygen vacancies,boosting the oxygen exchange capacity.It also increases NH_(3)adsorption at the Ce sites,promotes the formation of Sb-OH,and reduces competitive OH adsorption on these sites.Notably,compared with the reaction mechanism without HCl,the presence of chlorate species enhances NH_(3)adsorption and activation,which is vital for subsequent catalytic reactions. 展开更多
关键词 NH_(3)-selective catalytic reduction Chlorate species SbCeO_(x)catalyst Density functional theory HCI
在线阅读 下载PDF
Roles of Sn-promoter and carbon nanotubes treatment on supported CoB catalysts for hydrogen production
17
作者 SHI Limin LI Yanbo +2 位作者 LEI Qiang REN Rongzhi WANG Yujing 《燃料化学学报(中英文)》 北大核心 2025年第5期703-712,共10页
Carbon nanotubes(CNTs)supported CoB and CoBSn catalysts were synthesized for hydrogen production via NaBH4 hydrolysis.The roles of Sn-promoter and the effect of CNTs treatment on CoB catalysts were evaluated and discu... Carbon nanotubes(CNTs)supported CoB and CoBSn catalysts were synthesized for hydrogen production via NaBH4 hydrolysis.The roles of Sn-promoter and the effect of CNTs treatment on CoB catalysts were evaluated and discussed.It is found that after the addition of Sn promoter,the specific surface area and the generation of active CoB phase are increased,while the oxidation treatment of CNTs results in more loading amounts of active components and enrichment of electron at active sites as well as large surface area.Consequently,the Sn-doped CoB catalysts supported on CNTs with oxidation treatment exhibits a significantly improved activity with a high H_(2)generation rate of 2640 mL/(min·g).Meanwhile,this catalyst shows a low activation energy of 43.7 kJ/mol and relatively high reusability. 展开更多
关键词 sodium borohydride hydrolysis CoB-based catalysts Sn promoter carbon nanotubes oxidation treatment
在线阅读 下载PDF
Strong electronic metal-support interactions for enhanced hydroformylation activity and stability over Rh single-atom catalysts through phosphorus doping
18
作者 Boyang Fu Ping Ma +11 位作者 Xiaoyang Ding Kaifu Cai Limin Sun Yujin Zhu Qiwei Yin Yihao Sun Tianle Liu Yuzhen Li Yuxing Xu Jian Gu Haowen Ma Junling Lu 《中国科学技术大学学报》 北大核心 2025年第3期2-10,1,I0001,共11页
By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts d... By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts developed thus far still suffer from the issues of much lower activity and metal leaching,which severely hinder their practical application.Here,we demonstrate that incorporating phosphorus(P)atoms into graphitic carbon nitride(PCN)supports facilitates charge transfer from Rh to the PCN support,thus largely enhancing electronic metal-support interactions(EMSIs).In the styrene hydroformylation reaction,the activity of Rh_(1)/PCN single-atom catalysts(SACs)with varying P contents exhibited a volcano-shaped relationship with P doping,where the Rh_(1)/PCN SAC with optimal P doping showed exceptional activity,approximately 5.8-and 3.3-fold greater than that of the Rh_(1)/g-C_(3)N_(4)SAC without P doping and the industrial homogeneous catalyst HRh(CO)(PPh_(3))_(3),respectively.In addition,the optimal Rh_(1)/PCN SAC catalyst also demonstrated largely enhanced multicycle stability without any visible metal aggregation owing to the increased EMSIs,which sharply differed from the severe metal aggregation of large nanoparticles on the Rh_(1)/g-C_(3)N_(4)SAC.Mechan-istic studies revealed that the enhanced catalytic performance could be attributed to electron-deficient Rh species,which reduced CO adsorption while simultaneously promoting alkene adsorption through increased EMSIs.These findings suggest that tuning EMSIs is an effective way to achieve SACs with high activity and durability. 展开更多
关键词 heterogeneous hydroformylation Rh single-atom catalysts electronic metal-support interactions phosphorus doping
在线阅读 下载PDF
Design and Optimization of Anode Catalysts for Direct Ethanol Fuel Cells:Advances and Challenges in C-C bond Activation and Selective Modulation of the C1 Pathway
19
作者 Kai-Chi Qin Meng-Tian Huo +3 位作者 Yu Liang Si-Yuan Zhu Zi-Hao Xing Jin-Fa Chang 《电化学(中英文)》 北大核心 2025年第8期1-22,共22页
Direct ethanol fuel cells(DEFCs)are a promising alternative to conventional energy sources,offering high energy density,environmental sustainability,and operational safety.Compared to methanol fuel cells,DEFCs exhibit... Direct ethanol fuel cells(DEFCs)are a promising alternative to conventional energy sources,offering high energy density,environmental sustainability,and operational safety.Compared to methanol fuel cells,DEFCs exhibit lower toxicity and a more mature preparation process.Unlike hydrogen fuel cells,DEFCs provide superior storage and transport feasibility,as well as cost-effectiveness,significantly enhancing their commercial viability.However,the stable C-C bond in ethanol creates a high activation energy barrier,often resulting in incomplete electrooxidation.Current commercial platinum(Pt)-and palladium(Pd)-based catalysts demonstrate low C-C bond cleavage efficiency(<7.5%),severely limiting DEFC energy output and power density.Furthermore,high catalyst costs and insufficient activity impede large-scale commercialization.Recent advances in DEFC anode catalyst design have focused on optimizing material composition and elucidating catalytic mechanisms.This review systematically examines developments in ethanol electrooxidation catalysts over the past five years,highlighting strategies to improve C1 pathway selectivity and C-C bond activation.Key approaches,such as alloying,nanostructure engineering,and interfacial synergy effects,are discussed alongside their mechanistic implications.Finally,we outline current challenges and future prospects for DEFC commercialization. 展开更多
关键词 Direct ethanol fuel cells Ethanol electrooxidation C-C bond cleavage ELECTROCATALYSIS Anode catalyst
在线阅读 下载PDF
Catalyst呼吸门控系统在左侧乳腺癌患者术后放疗中的应用价值
20
作者 赵地 赵富丽 +1 位作者 范娟 刘威 《实用癌症杂志》 2025年第8期1276-1279,共4页
目的探讨Catalyst呼吸门控系统在左侧乳腺癌患者术后放射治疗中的应用价值。方法回顾性分析152例术后行调强放射治疗(IMRT)的左侧乳腺癌患者的临床资料,根据IMRT中呼吸门控技术不同分为对照组(n=79)和观察组(n=73)。对照组IMRT中应用主... 目的探讨Catalyst呼吸门控系统在左侧乳腺癌患者术后放射治疗中的应用价值。方法回顾性分析152例术后行调强放射治疗(IMRT)的左侧乳腺癌患者的临床资料,根据IMRT中呼吸门控技术不同分为对照组(n=79)和观察组(n=73)。对照组IMRT中应用主动呼吸门控系统(ABC),观察组IMRT中应用Catalyst呼吸门控系统。比较两组靶区剂量学参数[靶区2%体积受到的照射剂量(D_(2%))、靶区98%体积受到的照射剂量(D_(98%))、靶区受到的平均照射剂量(D_(mean))、均匀性指数(HI)、适形度指数(CI)、机器跳数],右侧乳腺剂量学参数(右侧乳腺D_(mean)),患侧肺剂量学参数[患侧肺D_(mean)、受到5 Gy剂量照射的肺体积占患侧肺总体积的百分比(患侧肺V_(5Gy))、受到20 Gy剂量照射的肺体积占患侧肺总体积的百分比(患侧肺V_(20Gy))],心脏剂量学参数[心脏D_(mean)、受到5 Gy剂量照射的心脏体积占心脏总体积的百分比(心脏V_(5Gy))、心脏胸壁间距离],冠状动脉左前降支(LAD)剂量学参数[LADD_(mean)、LAD受到的最大照射剂量(D_(max))]。结果两组靶区D_(2%)、靶区D_(98%)、靶区D_(mean)、HI、CI、机器跳数、右侧乳腺D_(mean)、患侧肺D_(mean)、患侧肺V_(5Gy)、患侧肺V_(20Gy)、心脏D_(mean)、心脏V_(5Gy)比较,差异均无统计学意义(P>0.05)。观察组心脏胸壁间距离大于对照组,LADD_(mean)、LADD_(max)低于对照组(P<0.05)。结论在左侧乳腺癌保乳术后IMRT中应用Catalyst呼吸门控系统可增加心脏与胸壁间距离,从而减少冠状动脉LAD受照射剂量。 展开更多
关键词 左侧乳腺癌 放射治疗 catalyst呼吸门控系统 剂量
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部