In order to obtain direct solutions of parallel manipulator without divergence in real time,a modified global Newton-Raphson(MGNR) algorithm was proposed for forward kinematics analysis of six-degree-of-freedom(DOF) p...In order to obtain direct solutions of parallel manipulator without divergence in real time,a modified global Newton-Raphson(MGNR) algorithm was proposed for forward kinematics analysis of six-degree-of-freedom(DOF) parallel manipulator.Based on geometrical frame of parallel manipulator,the highly nonlinear equations of kinematics were derived using analytical approach.The MGNR algorithm was developed for the nonlinear equations based on Tailor expansion and Newton-Raphson iteration.The procedure of MGNR algorithm was programmed in Matlab/Simulink and compiled to a real-time computer with Microsoft visual studio.NET for implementation.The performance of the MGNR algorithms for 6-DOF parallel manipulator was analyzed and confirmed.Applying the MGNR algorithm,the real generalized pose of moving platform is solved by using the set of given positions of actuators.The theoretical analysis and numerical results indicate that the presented method can achieve the numerical convergent solution in less than 1 ms with high accuracy(1×10-9 m in linear motion and 1×10-9 rad in angular motion),even the initial guess value is far from the root.展开更多
The present paper proposes three-dimensional model necessary to calculate the transient temperature field in a journal bearing submitted to a sudden change in speed and load and analyzes the bearing performance numeri...The present paper proposes three-dimensional model necessary to calculate the transient temperature field in a journal bearing submitted to a sudden change in speed and load and analyzes the bearing performance numerically. Thermal deformation of the bush and realistic thermal boundary conditions at oil and bush interface are considered. At each time step a Newton-Raphson method is used to solve the Reynolds equation, film thickness equation and the motion equation of the journal simultaneously to obtain the pressure distribution and the velocity of the journal center. Then the fluid film force is acquired through integral of fluid film force and the acceleration and position of the journal center are acquired through differences of the velocity. The energy equations of the oil film and the bush are solved simultaneously by using an efficient finite difference scheme. Then the transient three dimensional temperature field of the bearing is acquired by combining the energy equations and the Reynolds equation through the nodal temperature and pressure. It is found that the approaches introduced here converge quickly and save calculation time greatly.展开更多
Based on the extraction equilibrium and mass balances in countercurrent extraction systems, a novel method was studied for dealing with the extraction equilibrium and the mass distribution in a multi-component(gamma-c...Based on the extraction equilibrium and mass balances in countercurrent extraction systems, a novel method was studied for dealing with the extraction equilibrium and the mass distribution in a multi-component(gamma-component) system. The relationships of mass distribution (x(i), y(i), i = 1, ..., lambda) between two phases were expressed by 2 lambda dimensional simultaneous equations. These simultaneous equations can be converted to a one-dimension nonlinear equation, then it was solved by Newton-Raphson algorithm within a few number of iteration. Compared with the regular calculation method for the 2 lambda dimensional simultaneous equations, Newton-Raphson algorithm can decrease the number of iteration, increase the convergence of the equations and accelerate the speed of simulation. It was verified in many multi-component systems with satisfactory results. As an example, a five-component system is demonstrated in this paper.展开更多
基金Project(HgdJG00401D04) supported by National 921 Manned Space Project Foundation of ChinaProject(SKLRS200803B) supported by the Self-Planned Task Foundation of State Key Laboratory of Robotics and System (HIT) of China+1 种基金Project(CDAZ98502211) supported by China’s "World Class University (985)" Project FoundationProject(50975055) supported by the National Natural Science Foundation of China
文摘In order to obtain direct solutions of parallel manipulator without divergence in real time,a modified global Newton-Raphson(MGNR) algorithm was proposed for forward kinematics analysis of six-degree-of-freedom(DOF) parallel manipulator.Based on geometrical frame of parallel manipulator,the highly nonlinear equations of kinematics were derived using analytical approach.The MGNR algorithm was developed for the nonlinear equations based on Tailor expansion and Newton-Raphson iteration.The procedure of MGNR algorithm was programmed in Matlab/Simulink and compiled to a real-time computer with Microsoft visual studio.NET for implementation.The performance of the MGNR algorithms for 6-DOF parallel manipulator was analyzed and confirmed.Applying the MGNR algorithm,the real generalized pose of moving platform is solved by using the set of given positions of actuators.The theoretical analysis and numerical results indicate that the presented method can achieve the numerical convergent solution in less than 1 ms with high accuracy(1×10-9 m in linear motion and 1×10-9 rad in angular motion),even the initial guess value is far from the root.
文摘The present paper proposes three-dimensional model necessary to calculate the transient temperature field in a journal bearing submitted to a sudden change in speed and load and analyzes the bearing performance numerically. Thermal deformation of the bush and realistic thermal boundary conditions at oil and bush interface are considered. At each time step a Newton-Raphson method is used to solve the Reynolds equation, film thickness equation and the motion equation of the journal simultaneously to obtain the pressure distribution and the velocity of the journal center. Then the fluid film force is acquired through integral of fluid film force and the acceleration and position of the journal center are acquired through differences of the velocity. The energy equations of the oil film and the bush are solved simultaneously by using an efficient finite difference scheme. Then the transient three dimensional temperature field of the bearing is acquired by combining the energy equations and the Reynolds equation through the nodal temperature and pressure. It is found that the approaches introduced here converge quickly and save calculation time greatly.
文摘Based on the extraction equilibrium and mass balances in countercurrent extraction systems, a novel method was studied for dealing with the extraction equilibrium and the mass distribution in a multi-component(gamma-component) system. The relationships of mass distribution (x(i), y(i), i = 1, ..., lambda) between two phases were expressed by 2 lambda dimensional simultaneous equations. These simultaneous equations can be converted to a one-dimension nonlinear equation, then it was solved by Newton-Raphson algorithm within a few number of iteration. Compared with the regular calculation method for the 2 lambda dimensional simultaneous equations, Newton-Raphson algorithm can decrease the number of iteration, increase the convergence of the equations and accelerate the speed of simulation. It was verified in many multi-component systems with satisfactory results. As an example, a five-component system is demonstrated in this paper.