In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transform...In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.展开更多
For the vector attitude determination, the traditional optimal algorithms which are based on quaternion estimator(QUEST) measurement noise model are complicated for just two observations. In our application, the mag...For the vector attitude determination, the traditional optimal algorithms which are based on quaternion estimator(QUEST) measurement noise model are complicated for just two observations. In our application, the magnetometer and accelerometer are not two comparable kinds of sensors and both are not small field-of-view sensors as well. So in this paper a new unit measurement model is derived. According to the Wahba problem, the optimal weights for each measurement are obtained by the error variance researches. Then an improved quaternion Gauss–Newton method is presented and adopted to acquire attitude. Eventually, simulation results and experimental validation employed to test the proposed method demonstrate the usefulness of the improved algorithm.展开更多
In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space w...In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.展开更多
The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. ...The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. Based on the optimization theory, a sufficient condition for convergence of this algorithm with bounded price estimation error is obtained. Furthermore, even when this sufficient condition doesn't hold, this algorithm can also converge, provided a modified step size, and an attraction region is obtained. Based on Lasalle's invariance principle applied to a suitable Lyapunov function, the dynamic system described by this algorithm is proved to be global stability if the error is zero. And the Newton-Like algorithm with bounded price estimation error is also globally stable if the error satisfies the sufficient condition for convergence. All trajectories ultimately converge to the equilibrium point.展开更多
In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinea...In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.展开更多
Newton's learning algorithm of NN is presented and realized. In theory, the convergence rate of learning algorithm of NN based on Newton's method must be faster than BP's and other learning algorithms, because the ...Newton's learning algorithm of NN is presented and realized. In theory, the convergence rate of learning algorithm of NN based on Newton's method must be faster than BP's and other learning algorithms, because the gradient method is linearly convergent while Newton's method has second order convergence rate. The fast computing algorithm of Hesse matrix of the cost function of NN is proposed and it is the theory basis of the improvement of Newton's learning algorithm. Simulation results show that the convergence rate of Newton's learning algorithm is high and apparently faster than the traditional BP method's, and the robustness of Newton's learning algorithm is also better than BP method' s.展开更多
With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After f...With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After fully analyzing the features of quasi- Newton methods, the paper improves BP neural network algorithm. And the adjustment is made for the problems in the improvement process. The paper makes empirical analysis and proves the effectiveness of BP neural network algorithm based on quasi-Newton method. The improved algorithms are compared with the traditional BP algorithm, which indicates that the imoroved BP algorithm is better.展开更多
The generalized complementarity problem includes the well-known nonlinear complementarity problem and linear complementarity problem as special cases.In this paper, based on a class of smoothing functions, a smoothing...The generalized complementarity problem includes the well-known nonlinear complementarity problem and linear complementarity problem as special cases.In this paper, based on a class of smoothing functions, a smoothing Newton-type algorithm is proposed for solving the generalized complementarity problem.Under suitable assumptions, the proposed algorithm is well-defined and global convergent.展开更多
By using a smoothing function,the P nonlinear complementarity problem(P NCP)can be reformulated as a parameterized smooth equation.A Newton method is proposed to solve this equation.The iteration sequence generated by...By using a smoothing function,the P nonlinear complementarity problem(P NCP)can be reformulated as a parameterized smooth equation.A Newton method is proposed to solve this equation.The iteration sequence generated by the proposed algorithm is bounded and this algorithm is proved to be globally convergent under an assumption that the P NCP has a nonempty solution set.This assumption is weaker than the ones used in most existing smoothing algorithms.In particular,the solution obtained by the proposed algorithm is shown to be a maximally complementary solution of the P NCP without any additional assumption.展开更多
Based on the extraction equilibrium and mass balances in countercurrent extraction systems, a novel method was studied for dealing with the extraction equilibrium and the mass distribution in a multi-component(gamma-c...Based on the extraction equilibrium and mass balances in countercurrent extraction systems, a novel method was studied for dealing with the extraction equilibrium and the mass distribution in a multi-component(gamma-component) system. The relationships of mass distribution (x(i), y(i), i = 1, ..., lambda) between two phases were expressed by 2 lambda dimensional simultaneous equations. These simultaneous equations can be converted to a one-dimension nonlinear equation, then it was solved by Newton-Raphson algorithm within a few number of iteration. Compared with the regular calculation method for the 2 lambda dimensional simultaneous equations, Newton-Raphson algorithm can decrease the number of iteration, increase the convergence of the equations and accelerate the speed of simulation. It was verified in many multi-component systems with satisfactory results. As an example, a five-component system is demonstrated in this paper.展开更多
By using the theory of Euclidean Jordan algebras,based on a new class of smoothing functions,the QiSun-Zhou's smoothing Newton algorithm is extended to solve linear programming over symmetric cones(SCLP).The algor...By using the theory of Euclidean Jordan algebras,based on a new class of smoothing functions,the QiSun-Zhou's smoothing Newton algorithm is extended to solve linear programming over symmetric cones(SCLP).The algorithm is globally convergent under suitable assumptions.展开更多
In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear ...In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.展开更多
Multiplicative calculus(MUC)measures the rate of change of function in terms of ratios,which makes the exponential functions significantly linear in the framework of MUC.Therefore,a generally non-linear optimization p...Multiplicative calculus(MUC)measures the rate of change of function in terms of ratios,which makes the exponential functions significantly linear in the framework of MUC.Therefore,a generally non-linear optimization problem containing exponential functions becomes a linear problem in MUC.Taking this as motivation,this paper lays mathematical foundation of well-known classical Gauss-Newton minimization(CGNM)algorithm in the framework of MUC.This paper formulates the mathematical derivation of proposed method named as multiplicative Gauss-Newton minimization(MGNM)method along with its convergence properties.The proposed method is generalized for n number of variables,and all its theoretical concepts are authenticated by simulation results.Two case studies have been conducted incorporating multiplicatively-linear and non-linear exponential functions.From simulation results,it has been observed that proposed MGNM method converges for 12972 points,out of 19600 points considered while optimizing multiplicatively-linear exponential function,whereas CGNM and multiplicative Newton minimization methods converge for only 2111 and 9922 points,respectively.Furthermore,for a given set of initial value,the proposed MGNM converges only after 2 iterations as compared to 5 iterations taken by other methods.A similar pattern is observed for multiplicatively-non-linear exponential function.Therefore,it can be said that proposed method converges faster and for large range of initial values as compared to conventional methods.展开更多
Distributed generation (DG) is gaining in importance due to the growing demand for electrical energy and the key role it plays in reducing actual energy losses, lowering operating costs and improving voltage stability...Distributed generation (DG) is gaining in importance due to the growing demand for electrical energy and the key role it plays in reducing actual energy losses, lowering operating costs and improving voltage stability. In this paper, we propose to inject distributed power generation into a distribution system while minimizing active energy losses. This injection should be done at a grid node (which is a point where energy can be injected into or recovered from the grid) that will be considered the optimal node when total active losses in the radial distribution system are minimal. The focus is on meeting energy demand using renewable energy sources. The main criterion is the minimization of active energy losses during injection. The method used is the algorithm of bee colony (ABC) associated with Newtonian energy flow transfer equations. The method has been implemented in MATLAB for optimal node search in IEEE 14, 33 and 57 nodes networks. The active energy loss results of this hybrid algorithm were compared with the results of previous searches. This comparison shows that the proposed algorithm allows to have reduced losses with the power injected that we have found.展开更多
In order to improve the performance of time difference of arrival(TDOA)localization,a nonlinear least squares algorithm is proposed in this paper.Firstly,based on the criterion of the minimized sum of square error of ...In order to improve the performance of time difference of arrival(TDOA)localization,a nonlinear least squares algorithm is proposed in this paper.Firstly,based on the criterion of the minimized sum of square error of time difference of arrival,the location estimation is expressed as an optimal problem of a non-linear programming.Then,an initial point is obtained using the semi-definite programming.And finally,the location is extracted from the local optimal solution acquired by Newton iterations.Simulation results show that when the number of anchor nodes is large,the performance of the proposed algorithm will be significantly better than that of semi-definite programming approach with the increase of measurement noise.展开更多
Air exploratory discussion of an ancient Chinese algorithm, the Ying Buzu Shu, in about 2nd century BC, known as the rule of double false position in the West is given. In addition to pointing out that the rule of dou...Air exploratory discussion of an ancient Chinese algorithm, the Ying Buzu Shu, in about 2nd century BC, known as the rule of double false position in the West is given. In addition to pointing out that the rule of double false position is actually a translation version of the ancient Chinese algorithm, a comparison with well-known Newton iteration method is also made. If derivative is introduced, the ancient Chinese algorithm reduces to the Newton method. A modification of the ancient Chinese algorithm is also proposed, and some of applications to nonlinear oscillators are illustrated.展开更多
An active set truncated-Newton algorithm (ASTNA) is proposed to solve the large-scale bound constrained sub-problems. The global convergence of the algorithm is obtained and two groups of numerical experiments are mad...An active set truncated-Newton algorithm (ASTNA) is proposed to solve the large-scale bound constrained sub-problems. The global convergence of the algorithm is obtained and two groups of numerical experiments are made for the various large-scale problems of varying size. The comparison results between ASTNA and the subspace limited memory quasi-Newton algorithm and between the modified augmented Lagrange multiplier methods combined with ASTNA and the modified barrier function method show the stability and effectiveness of ASTNA for simultaneous optimization of distillation column.展开更多
The paper presents the Quasi Newton model of Artificial Neural Network for design of circular microstrip antenna (MSA). In this model, a closed form expression is used for accurate determination of the resonant freque...The paper presents the Quasi Newton model of Artificial Neural Network for design of circular microstrip antenna (MSA). In this model, a closed form expression is used for accurate determination of the resonant frequency of circular microstrip patch antenna. The calculated resonant frequency results are in good agreement with the experimental results reported elsewhere. The results show better agreement with the trained and tested data of ANN models. The results are verified by the experimental results to produce accurate ANN models. This presents ANN model practically as an alternative method to the detailed electromagnetic design of circular microstrip antenna.展开更多
基金Supported by the Optimisation Theory and Algorithm Research Team(Grant No.23kytdzd004)University Science Research Project of Anhui Province(Grant No.2024AH050631)the General Programs for Young Teacher Cultivation of Educational Commission of Anhui Province(Grant No.YQYB2023090).
文摘In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.
文摘For the vector attitude determination, the traditional optimal algorithms which are based on quaternion estimator(QUEST) measurement noise model are complicated for just two observations. In our application, the magnetometer and accelerometer are not two comparable kinds of sensors and both are not small field-of-view sensors as well. So in this paper a new unit measurement model is derived. According to the Wahba problem, the optimal weights for each measurement are obtained by the error variance researches. Then an improved quaternion Gauss–Newton method is presented and adopted to acquire attitude. Eventually, simulation results and experimental validation employed to test the proposed method demonstrate the usefulness of the improved algorithm.
基金supported by the National Natural Science Foundation of China(11401126,71471140 and 11361018)Guangxi Natural Science Foundation(2016GXNSFBA380102 and 2014GXNSFFA118001)+2 种基金Guangxi Key Laboratory of Cryptography and Information Security(GCIS201618)Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ15112 and YQ16112)China
文摘In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.
基金supported in part by the National Outstanding Youth Foundation of P.R.China (60525303)the National Natural Science Foundation of P.R.China(60404022,60604004)+2 种基金the Natural Science Foundation of Hebei Province (102160)the special projects in mathematics funded by the Natural Science Foundation of Hebei Province(07M005)the NS of Education Office in Hebei Province (2004123).
文摘The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. Based on the optimization theory, a sufficient condition for convergence of this algorithm with bounded price estimation error is obtained. Furthermore, even when this sufficient condition doesn't hold, this algorithm can also converge, provided a modified step size, and an attraction region is obtained. Based on Lasalle's invariance principle applied to a suitable Lyapunov function, the dynamic system described by this algorithm is proved to be global stability if the error is zero. And the Newton-Like algorithm with bounded price estimation error is also globally stable if the error satisfies the sufficient condition for convergence. All trajectories ultimately converge to the equilibrium point.
基金supported by National Foundation of Natural Science under the Grant 11071216
文摘In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.
文摘Newton's learning algorithm of NN is presented and realized. In theory, the convergence rate of learning algorithm of NN based on Newton's method must be faster than BP's and other learning algorithms, because the gradient method is linearly convergent while Newton's method has second order convergence rate. The fast computing algorithm of Hesse matrix of the cost function of NN is proposed and it is the theory basis of the improvement of Newton's learning algorithm. Simulation results show that the convergence rate of Newton's learning algorithm is high and apparently faster than the traditional BP method's, and the robustness of Newton's learning algorithm is also better than BP method' s.
文摘With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After fully analyzing the features of quasi- Newton methods, the paper improves BP neural network algorithm. And the adjustment is made for the problems in the improvement process. The paper makes empirical analysis and proves the effectiveness of BP neural network algorithm based on quasi-Newton method. The improved algorithms are compared with the traditional BP algorithm, which indicates that the imoroved BP algorithm is better.
基金Supported by LIU Hui Centre for Applied Mathematics of Nankai University and Tianjin University
文摘The generalized complementarity problem includes the well-known nonlinear complementarity problem and linear complementarity problem as special cases.In this paper, based on a class of smoothing functions, a smoothing Newton-type algorithm is proposed for solving the generalized complementarity problem.Under suitable assumptions, the proposed algorithm is well-defined and global convergent.
基金Supported by China Postdoctoral Science Foundation(No.20060390660)Science and Technology Development Plan of Tianjin(No.06YFGZGX05600)+1 种基金Scientific Research Foundation of Liu Hui Center for Applied MathematicsNankai University-Tianjin University.
文摘By using a smoothing function,the P nonlinear complementarity problem(P NCP)can be reformulated as a parameterized smooth equation.A Newton method is proposed to solve this equation.The iteration sequence generated by the proposed algorithm is bounded and this algorithm is proved to be globally convergent under an assumption that the P NCP has a nonempty solution set.This assumption is weaker than the ones used in most existing smoothing algorithms.In particular,the solution obtained by the proposed algorithm is shown to be a maximally complementary solution of the P NCP without any additional assumption.
文摘Based on the extraction equilibrium and mass balances in countercurrent extraction systems, a novel method was studied for dealing with the extraction equilibrium and the mass distribution in a multi-component(gamma-component) system. The relationships of mass distribution (x(i), y(i), i = 1, ..., lambda) between two phases were expressed by 2 lambda dimensional simultaneous equations. These simultaneous equations can be converted to a one-dimension nonlinear equation, then it was solved by Newton-Raphson algorithm within a few number of iteration. Compared with the regular calculation method for the 2 lambda dimensional simultaneous equations, Newton-Raphson algorithm can decrease the number of iteration, increase the convergence of the equations and accelerate the speed of simulation. It was verified in many multi-component systems with satisfactory results. As an example, a five-component system is demonstrated in this paper.
基金Supported by Liu Hui Centre for Applied Mathematics,Nankai University and Tianjin University
文摘By using the theory of Euclidean Jordan algebras,based on a new class of smoothing functions,the QiSun-Zhou's smoothing Newton algorithm is extended to solve linear programming over symmetric cones(SCLP).The algorithm is globally convergent under suitable assumptions.
基金Supported by University Science Research Project of Anhui Province(2023AH052921)Outstanding Youth Talent Project of Anhui Province(gxyq2021254)。
文摘In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.
文摘Multiplicative calculus(MUC)measures the rate of change of function in terms of ratios,which makes the exponential functions significantly linear in the framework of MUC.Therefore,a generally non-linear optimization problem containing exponential functions becomes a linear problem in MUC.Taking this as motivation,this paper lays mathematical foundation of well-known classical Gauss-Newton minimization(CGNM)algorithm in the framework of MUC.This paper formulates the mathematical derivation of proposed method named as multiplicative Gauss-Newton minimization(MGNM)method along with its convergence properties.The proposed method is generalized for n number of variables,and all its theoretical concepts are authenticated by simulation results.Two case studies have been conducted incorporating multiplicatively-linear and non-linear exponential functions.From simulation results,it has been observed that proposed MGNM method converges for 12972 points,out of 19600 points considered while optimizing multiplicatively-linear exponential function,whereas CGNM and multiplicative Newton minimization methods converge for only 2111 and 9922 points,respectively.Furthermore,for a given set of initial value,the proposed MGNM converges only after 2 iterations as compared to 5 iterations taken by other methods.A similar pattern is observed for multiplicatively-non-linear exponential function.Therefore,it can be said that proposed method converges faster and for large range of initial values as compared to conventional methods.
文摘Distributed generation (DG) is gaining in importance due to the growing demand for electrical energy and the key role it plays in reducing actual energy losses, lowering operating costs and improving voltage stability. In this paper, we propose to inject distributed power generation into a distribution system while minimizing active energy losses. This injection should be done at a grid node (which is a point where energy can be injected into or recovered from the grid) that will be considered the optimal node when total active losses in the radial distribution system are minimal. The focus is on meeting energy demand using renewable energy sources. The main criterion is the minimization of active energy losses during injection. The method used is the algorithm of bee colony (ABC) associated with Newtonian energy flow transfer equations. The method has been implemented in MATLAB for optimal node search in IEEE 14, 33 and 57 nodes networks. The active energy loss results of this hybrid algorithm were compared with the results of previous searches. This comparison shows that the proposed algorithm allows to have reduced losses with the power injected that we have found.
基金This study was supported by the“High level research and training project for professional leaders of teachers in Higher Vocational Colleges in Jiangsu Province”.
文摘In order to improve the performance of time difference of arrival(TDOA)localization,a nonlinear least squares algorithm is proposed in this paper.Firstly,based on the criterion of the minimized sum of square error of time difference of arrival,the location estimation is expressed as an optimal problem of a non-linear programming.Then,an initial point is obtained using the semi-definite programming.And finally,the location is extracted from the local optimal solution acquired by Newton iterations.Simulation results show that when the number of anchor nodes is large,the performance of the proposed algorithm will be significantly better than that of semi-definite programming approach with the increase of measurement noise.
文摘Air exploratory discussion of an ancient Chinese algorithm, the Ying Buzu Shu, in about 2nd century BC, known as the rule of double false position in the West is given. In addition to pointing out that the rule of double false position is actually a translation version of the ancient Chinese algorithm, a comparison with well-known Newton iteration method is also made. If derivative is introduced, the ancient Chinese algorithm reduces to the Newton method. A modification of the ancient Chinese algorithm is also proposed, and some of applications to nonlinear oscillators are illustrated.
基金Project (2002CB312200) supported by the National Key Basic Research and Development Program of China Project(03JJY3109) supported by the Natural Science Foundation of Hunan Province
文摘An active set truncated-Newton algorithm (ASTNA) is proposed to solve the large-scale bound constrained sub-problems. The global convergence of the algorithm is obtained and two groups of numerical experiments are made for the various large-scale problems of varying size. The comparison results between ASTNA and the subspace limited memory quasi-Newton algorithm and between the modified augmented Lagrange multiplier methods combined with ASTNA and the modified barrier function method show the stability and effectiveness of ASTNA for simultaneous optimization of distillation column.
文摘The paper presents the Quasi Newton model of Artificial Neural Network for design of circular microstrip antenna (MSA). In this model, a closed form expression is used for accurate determination of the resonant frequency of circular microstrip patch antenna. The calculated resonant frequency results are in good agreement with the experimental results reported elsewhere. The results show better agreement with the trained and tested data of ANN models. The results are verified by the experimental results to produce accurate ANN models. This presents ANN model practically as an alternative method to the detailed electromagnetic design of circular microstrip antenna.