期刊文献+
共找到178篇文章
< 1 2 9 >
每页显示 20 50 100
A Neural Network Approach for Designing 2-D FIR Filters with Arbitrary Magnitude Responses
1
作者 Xiaohua Wang Yigang He 《通讯和计算机(中英文版)》 2006年第3期66-71,共6页
在线阅读 下载PDF
A neural network approach based on more input neurons to predict nuclear mass 被引量:1
2
作者 Tian-Liang Zhao Hong-Fei Zhang 《Chinese Physics C》 SCIE CAS CSCD 2022年第4期123-130,共8页
The study of nuclear mass is very important,and the neural network(NN)approach can be used to improve the prediction of nuclear mass for various models.Considering the number of valence nucleons of protons and neutron... The study of nuclear mass is very important,and the neural network(NN)approach can be used to improve the prediction of nuclear mass for various models.Considering the number of valence nucleons of protons and neutrons separately in the input quantity of the NN model,the root-mean-square deviation of binding energy between data from AME2016 and liquid drop model calculations for 2314 nuclei was reduced from 2.385 MeV to 0.203 MeV.In addition,some defects in the Weizsacker-Skyrme(WS)-type model were repaired,which well reproduced the two-neutron separation energy of the nucleus synthesized recently by RIKEN RI Beam Factory[Phys.Rev.Lett.125,(2020)122501].The masses of some of the new nuclei appearing in the latest atomic mass evaluation(AME2020)are also well reproduced.However,the results of neural network methods for predicting the description of regions far from known atomic nuclei need to be further improved.This study shows that such a statistical model can be a tool for systematic searching of nuclei beyond existing experimental data. 展开更多
关键词 neural network approach liquid-drop model binding energy
原文传递
Magnetic moment predictions of odd-A nuclei with the Bayesian neural network approach 被引量:1
3
作者 Zilong Yuan Dachuan Tian +1 位作者 Jian Li Zhongming Niu 《Chinese Physics C》 SCIE CAS CSCD 2021年第12期147-154,共8页
The Bayesian neural network approach has been employed to improve the nuclear magnetic moment predictions of odd-A nuclei.The Schmidt magnetic moment obtained from the extreme single-particle shell model makes large r... The Bayesian neural network approach has been employed to improve the nuclear magnetic moment predictions of odd-A nuclei.The Schmidt magnetic moment obtained from the extreme single-particle shell model makes large root-mean-square(rms)deviations from data,i.e.,0.949μN and 1.272μN for odd-neutron nuclei and odd-proton nuclei,respectively.By including the dependence of the nuclear spin and Schmidt magnetic moment,the machine-learning approach precisely describes the magnetic moments of odd-A uclei with rms deviations of 0.036μN for odd-neutron nuclei and 0.061μN for odd-proton nuclei.Furthermore,the evolution of magnetic moments along isotopic chains,including the staggering and sudden jump trend,which are difficult to describe using nuclear models,have been well reproduced by the Bayesian neural network(BNN)approach.The magnetic moments of doubly closed-shell±1 nuclei,for example,isoscalar and isovector magnetic moments,have been well studied and compared with the corresponding non-relativistic and relativistic calculations. 展开更多
关键词 magnetic moment odd-A nuclei Bayesian neural network approach
原文传递
Research on a Neural Network Approach Based Diagnosis Expert System of Crack Control in Massive Concrete
4
作者 HAN Liu-xin 1, WANG Huan-chen 1,\ ZHANG Xian-hui 2 1.Institute of Systems Engineering, Shanghai Jiaotong University, Shanghai 200052, China 2.Shanghai Yongye Enterprise (Group) Co., Ltd,200021 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2001年第3期359-365,共7页
A detailed study of the capabilities of artificial neural networks to diagnoses cracks in massive concrete structures is presented. This paper includes the components of the expert system such as design thought, basic... A detailed study of the capabilities of artificial neural networks to diagnoses cracks in massive concrete structures is presented. This paper includes the components of the expert system such as design thought, basic structure, building of knowledge base and the implementation of neural network applied model. The realizing method of neural network based clustering algorithm in the knowledge base and self study is analyzed emphatically and stimulated by means of the computer. From the above study, some important conclusions have been drawn and some new viewpoints have been suggested. 展开更多
关键词 neural network approach expert system crack control
原文传递
Artificial Neural Network(ANN)Approach for Predicting Concrete Compressive Strength by SonReb
5
作者 Mario Bonagura Lucio Nobile 《Structural Durability & Health Monitoring》 EI 2021年第2期125-137,共13页
The compressive strength of concrete is one of most important mechanical parameters in the performance assessment of existing reinforced concrete structures.According to various international codes,core samples are dr... The compressive strength of concrete is one of most important mechanical parameters in the performance assessment of existing reinforced concrete structures.According to various international codes,core samples are drilled and tested to obtain the concrete compressive strengths.Non-destructive testing is an important alternative when destructive testing is not feasible without damaging the structure.The commonly used non-destructive testing(NDT)methods to estimate the in-situ values include the Rebound hammer test and the Ultrasonic Pulse Velocity test.The poor reliability of these tests due to different aspects could be partially contrasted by using both methods together,as proposed.in the SonReb method.There are three techniques that are commonly used to predict the compressive strength of concrete based on the SonReb measurements:computational modeling,artificial intelligence,and parametric multi-variable regression models.In a previous study the accuracy of the correlation formulas deduced from the last technique has been investigated in comparison with the effective compressive strengths based on destructive test results on core drilled in adjacent locations.The aim of this study is to verify the accuracy of Artificial Neural Approach comparing the estimated compressive strengths based on NDT measured parameters with the same effective compressive strengths.The comparisons show the best performance of ANN approach. 展开更多
关键词 Compressive concrete strength destructive tests non-destructive test ultrasonic pulse velocity rebound index SonReb method artificial neural network approach
在线阅读 下载PDF
An linear matrix inequality approach to global synchronisation of non-parameter perturbations of multi-delay Hopfield neural network
6
作者 邵海见 蔡国梁 汪浩祥 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期212-217,共6页
In this study, a successful linear matrix inequality approach is used to analyse a non-parameter perturbation of multi-delay Hopfield neural network by constructing an appropriate Lyapunov-Krasovskii functional. This ... In this study, a successful linear matrix inequality approach is used to analyse a non-parameter perturbation of multi-delay Hopfield neural network by constructing an appropriate Lyapunov-Krasovskii functional. This paper presents the comprehensive discussion of the approach and also extensive applications. 展开更多
关键词 Hopfield neural network LMI approach global synchronisation sliding mode control
原文传递
Neural Network Based Normalized Fusion Approaches for Optimized Multimodal Biometric Authentication Algorithm 被引量:2
7
作者 E. Sujatha A. Chilambuchelvan 《Circuits and Systems》 2016年第8期1199-1206,共8页
A multimodal biometric system is applied to recognize individuals for authentication using neural networks. In this paper multimodal biometric algorithm is designed by integrating iris, finger vein, palm print and fac... A multimodal biometric system is applied to recognize individuals for authentication using neural networks. In this paper multimodal biometric algorithm is designed by integrating iris, finger vein, palm print and face biometric traits. Normalized score level fusion approach is applied and optimized, encoded for matching decision. It is a multilevel wavelet, phase based fusion algorithm. This robust multimodal biometric algorithm increases the security level, accuracy, reduces memory size and equal error rate and eliminates unimodal biometric algorithm vulnerabilities. 展开更多
关键词 Multimodal Biometrics Score Level Fusion approach neural network OPTIMIZATION
在线阅读 下载PDF
Prediction of nuclear charge density distribution with feedback neural network 被引量:5
8
作者 Tian‑Shuai Shang Jian Li Zhong‑Ming Niu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第12期24-35,共12页
Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,th... Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,the feedforward neural network has been employed to study the available 2pF model parameters for 86 nuclei,and the accuracy and precision of the parameter-learning effect are improved by introducing A^(1∕3)into the input parameter of the neural network.Furthermore,the average result of multiple predictions is more reliable than the best result of a single prediction and there is no significant difference between the average result of the density and parameter values for the average charge density distribution.In addition,the 2pF parameters of 284(near)stable nuclei are predicted in this study,which provides a reference for the experiment. 展开更多
关键词 Charge density distribution Two-parameter Fermi model Feedforward neural network approach
在线阅读 下载PDF
Navigation Model for a Lego Robot Using a Backpropagation Neural Network
9
作者 Erick Cervantes Chirinos Jose Antonio Castan Rocha Salvador Ibarra Martinez Julio Laria Menchaca Javier Guzman Obando Mayra Trevino Berrones Emilio Castan Rocha 《通讯和计算机(中英文版)》 2015年第4期212-218,共7页
关键词 反向传播神经网络 导航模型 机器人 MATLAB语言 无人驾驶车辆 BP神经网络 自主导航 避免碰撞
在线阅读 下载PDF
Artificial Neural Networks Applied to Landslide Susceptibility Mapping in the Northern Area of the Central Rif(Morocco)
10
作者 M.Amharrak J.El khattabi +2 位作者 B.Louche L.Asebriy E.Carlier 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期64-64,共1页
Recently,Artificial Neural Networks(ANNs)have been used for various scientific and engineering applications essentially because they allow the modeling of a process,which starts from the database containing the variab... Recently,Artificial Neural Networks(ANNs)have been used for various scientific and engineering applications essentially because they allow the modeling of a process,which starts from the database containing the variables that describe that particular process.They have already been applied to the study of landslides in particular,with reference to the indirect determination of the triggering 展开更多
关键词 LANDSLIDE SUSCEPTIBILITY statistical approach artificial neural network CENTRAL RIF
在线阅读 下载PDF
Lyapunov-Based Dynamic Neural Network for Adaptive Control of Complex Systems
11
作者 Farouk Zouari Kamel Ben Saad Mohamed Benrejeb 《Journal of Software Engineering and Applications》 2012年第4期225-248,共24页
In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network is trained-off-line to learn the inverse dynamics of the system from the observation of the input-o... In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network is trained-off-line to learn the inverse dynamics of the system from the observation of the input-output data. The direct adaptive approach is performed after the training process is achieved. A lyapunov-Base training algorithm is proposed and used to adjust on-line the network weights so that the neural model output follows the desired one. The simulation results obtained verify the effectiveness of the proposed control method. 展开更多
关键词 Complex DYNAMICAL Systems LYAPUNOV approach RECURRENT neural networks Adaptive Control
在线阅读 下载PDF
基于神经网络的硬化水泥浆体等效强度预测
12
作者 宋敏 杨予舒 +1 位作者 祝华杰 王志勇 《高压物理学报》 北大核心 2025年第8期78-88,共11页
为实现材料性能优化并保障工程结构安全,需要研究具有复杂结构的水泥水化模型的力学性能。为此,考察了水灰比及各相体积分数对水泥浆体等效力学性能的影响,提出了一种基于数据驱动的模型,用于预测水化水泥结构的力学性能。通过HYMOSTRUC... 为实现材料性能优化并保障工程结构安全,需要研究具有复杂结构的水泥水化模型的力学性能。为此,考察了水灰比及各相体积分数对水泥浆体等效力学性能的影响,提出了一种基于数据驱动的模型,用于预测水化水泥结构的力学性能。通过HYMOSTRUC 3D软件生成波特兰硬化水泥浆体三维结构切片,基于Python编写的批处理程序,将切片批量转换为ABAQUS模型。通过拉伸仿真模拟,得到结构的等效弹性性能和等效强度,运用数据驱动方法建立反向传播预测模型。模型的超参数优化采用K折交叉验证方法,以提高模型的泛化能力。最终训练得到的神经网络模型能够准确预测水泥水化结构的力学性能,显著降低传统分析方法在材料微观尺度研究中的复杂性。研究结果为水泥基材料的性能预测提供了一种高效且可靠的解决方案。 展开更多
关键词 硬化水泥浆体 有限元方法 神经网络 数据驱动方法 单轴拉伸
在线阅读 下载PDF
数据与知识联合驱动的舰船目标细粒度分类
13
作者 郭嘉胜 刘俊 +5 位作者 何兰 姜盼 薛安克 谷雨 韩利 张杰 《光电工程》 北大核心 2025年第6期35-48,共14页
在当前舰船细粒度分类任务中,仅依赖单一图像数据的方法,只能通过提取目标的图像特征进行分类,难以捕捉舰船本体与其部件间的复杂关系,致使识别精度受限和泛化性差。提出一种数据与知识联合驱动的舰船细粒度分类方法—DKSCN,首先利用目... 在当前舰船细粒度分类任务中,仅依赖单一图像数据的方法,只能通过提取目标的图像特征进行分类,难以捕捉舰船本体与其部件间的复杂关系,致使识别精度受限和泛化性差。提出一种数据与知识联合驱动的舰船细粒度分类方法—DKSCN,首先利用目标检测网络对舰船主体及其关键部位进行检测,通过设计图卷积网络并结合专家知识建立高级语义知识图结构,来捕捉舰船主体与其关键部位间的关系,在分类的过程中融入领域知识来合理化驱动数据。在自建数据集上的对比实验结果表明,所提方法在改善单一数据驱动模型局限性的同时提高分类精度。 展开更多
关键词 舰船识别 图卷积神经网络 数据知识联合驱动 细粒度分类
在线阅读 下载PDF
基于HNN和SDA的超短期热负荷预测研究
14
作者 张龙龙 刘建军 +4 位作者 李冲 渐刚 何超 周泽楷 侯宏娟 《暖通空调》 2025年第8期174-180,93,共8页
热负荷的精准预测能够帮助集中供热系统解决其长期运行过程中存在的能源浪费及源荷不匹配问题。在此基础上,本文提出了一种基于混合神经网络(HNN)和相似日法(SDA)的超短期热负荷预测方法,该方法提高了神经网络模型提取数据特征的能力,... 热负荷的精准预测能够帮助集中供热系统解决其长期运行过程中存在的能源浪费及源荷不匹配问题。在此基础上,本文提出了一种基于混合神经网络(HNN)和相似日法(SDA)的超短期热负荷预测方法,该方法提高了神经网络模型提取数据特征的能力,同时提高了输入训练集的质量。采用山东省某热电联供机组供热侧的供热数据作为案例进行研究,实验结果表明,较单一的卷积神经网络(CNN)、Transformer及长短时记忆(LSTM)神经网络和CNN-LSTM等模型,本文所提出的HNN模型对热负荷预测有更高的精度;同时,SDA的引入提高了神经网络模型的预测精度,缩短了神经网络模型的训练时间。 展开更多
关键词 集中供热 负荷预测 混合神经网络 卷积神经网络 相似日法
在线阅读 下载PDF
基于全驱系统方法的严格反馈高阶非线性系统的神经网络自适应控制
15
作者 闫城源 夏建伟 《曲阜师范大学学报(自然科学版)》 2025年第4期20-28,共9页
该文采用全驱系统方法研究了严格反馈高阶非线性系统的神经网络自适应控制问题.首先,引入一个新的坐标变换技术,基于全驱系统方法,构造了一种能够处理严格反馈高阶系统的自适应控制器,无需将系统转化为一阶系统,减少了计算负担.其次,考... 该文采用全驱系统方法研究了严格反馈高阶非线性系统的神经网络自适应控制问题.首先,引入一个新的坐标变换技术,基于全驱系统方法,构造了一种能够处理严格反馈高阶系统的自适应控制器,无需将系统转化为一阶系统,减少了计算负担.其次,考虑到系统存在不确定性和先验知识未知的非线性函数,引入径向基函数神经网络逼近技术,实现了对复杂不确定项的在线估计与补偿.最后,利用李亚普诺夫稳定性理论证明了所有闭环信号的有界性.在此基础上,将所提出的控制策略应用到单连杆机械臂系统中,验证了方案的有效性. 展开更多
关键词 全驱系统方法 神经网络 反步技术
在线阅读 下载PDF
基于全驱系统方法的AUV鲁棒自适应轨迹跟踪控制
16
作者 王鹏 钱承 +1 位作者 张柳柳 华长春 《控制与决策》 北大核心 2025年第1期285-291,共7页
针对存在执行器故障、外界干扰和模型不确定的自主式水下潜航器系统(autonomous underwater vehicle,AUV),提出基于全驱系统(fully actuated system,FAS)方法的鲁棒自适应轨迹跟踪误差受限控制策略,使AUV能够渐近跟踪目标信号.首先,将... 针对存在执行器故障、外界干扰和模型不确定的自主式水下潜航器系统(autonomous underwater vehicle,AUV),提出基于全驱系统(fully actuated system,FAS)方法的鲁棒自适应轨迹跟踪误差受限控制策略,使AUV能够渐近跟踪目标信号.首先,将跟踪误差相关的归一化函数和障碍函数与时变尺度函数相结合,提出误差受限全驱系统方法;其次,将径向基函数神经网络(radial basis function neural networks,RBFNNs)与误差受限全驱系统方法相结合处理系统中的不确定模型;进一步,设计自适应补偿机制处理执行器故障;再次基于Lyapunov稳定性理论证明轨迹跟踪误差渐近收敛于零;最后,通过仿真结果验证所设计的鲁棒自适应轨迹跟踪误差受限控制器的有效性. 展开更多
关键词 全驱系统方法 鲁棒控制 自适应控制 神经网络 轨迹跟踪控制
原文传递
基于非降阶法的模糊惯性神经网络的固定时间同步
17
作者 陈腾 戴厚平 龙常青 《控制理论与应用》 北大核心 2025年第10期1990-1998,共9页
截止目前,关于惯性神经网络的固定时间同步分析大都采用变量代换将其进行降阶处理,这种降阶法虽然有效,但增加了系统维数,消除了惯性项对系统的影响.因此,基于非降阶的方法,本文研究了一类时滞模糊惯性神经网络的固定时间同步控制问题.... 截止目前,关于惯性神经网络的固定时间同步分析大都采用变量代换将其进行降阶处理,这种降阶法虽然有效,但增加了系统维数,消除了惯性项对系统的影响.因此,基于非降阶的方法,本文研究了一类时滞模糊惯性神经网络的固定时间同步控制问题.在Filippov解的定义和有限时间稳定的理论框架下,通过设计非线性反馈控制器,获得了确保该类神经网络在固定时间内实现同步的一些同步准则.此外,通过应用一些不等式技巧,估算出了同步时间的上界,可为其应用于实际工程中提供可靠性保证.最后,通过数值算例验证了本文所得结果的可靠性,并将其应用于图像加解密. 展开更多
关键词 不连续激活函数 模糊惯性神经网络 固定时间同步 非降阶法
在线阅读 下载PDF
考虑行人轨迹信息的移动机器人动态避障技术
18
作者 何浪 李世芸 +2 位作者 仇隽挺 张陈皓旻 游刚 《机械设计与研究》 北大核心 2025年第3期367-375,共9页
传统避障技术通常依赖于静态环境感知或对动态物体的简单响应,难以有效预测动态障碍物的行为。而考虑行人轨迹信息的避障技术结合了深度学习算法,能够理解行人行为模式,作出更加合理的决策进行避障。首先,对深度相机采集的彩色图像数据... 传统避障技术通常依赖于静态环境感知或对动态物体的简单响应,难以有效预测动态障碍物的行为。而考虑行人轨迹信息的避障技术结合了深度学习算法,能够理解行人行为模式,作出更加合理的决策进行避障。首先,对深度相机采集的彩色图像数据进行处理,采用YOLOv5算法进行目标检测,DeepSort算法实现实时跟踪,MediaPipe算法完成姿态识别。然后,通过目标检测和实时跟踪计算出行人位置信息,通过姿态识别获取行人姿态信息,采用LK光流计算方法得到移动机器人的运动信息,将上述信息输入到全卷积神经网络中进行训练,并输出预测轨迹;其次,对深度相机和激光雷达进行联合标定,通过深度图获得行人距离信息,并解算出预测轨迹的姿态角,将预测轨迹信息映射到激光雷达建立的栅格地图中。最后,使用包含行人轨迹预测信息的动态窗口法进行避障。实际环境测试表明,考虑行人轨迹的总体避障时间减少了61.3%,与行人间的最短距离增加了84.56%。能够得出结论,与传统避障技术相比,考虑行人轨迹的移动机器人可以精确感知行人及其运动轨迹,从而使避障策略和最终路径更加合理。 展开更多
关键词 动态避障 动态窗口法 全卷积神经网络 轨迹预测 光流法
原文传递
基于市场法和LSTM神经网络的高新技术企业价值评估
19
作者 孙飞宇 凌峰 梅旭 《商业观察》 2025年第18期25-30,共6页
为满足市场对于不断增长的高新技术企业价值评估的需求,文章以YW企业为例,在传统价值评估方法——市场法的基础上,构建了可比企业价值评估指标体系。根据评估指标体系,运用系统聚类法筛选出可比企业,最后使用市盈率、市净率和市销率对... 为满足市场对于不断增长的高新技术企业价值评估的需求,文章以YW企业为例,在传统价值评估方法——市场法的基础上,构建了可比企业价值评估指标体系。根据评估指标体系,运用系统聚类法筛选出可比企业,最后使用市盈率、市净率和市销率对目标企业进行价值评估。同时运用LSTM神经网络模型的结果进行对比。结果表明,市销率和LSTM神经网络模型对于目标企业的评估结果较为精准。市盈率和市净率的评估结果偏差较大,不适用于高新技术企业的价值评估。 展开更多
关键词 市场法 LSTM神经网络 高新技术企业
在线阅读 下载PDF
文化产品产权价值评估数智技术方法研究
20
作者 丛挺 林凯妮 《上海理工大学学报(社会科学版)》 2025年第1期45-54,共10页
文化产品产权价值评估是制约文化产业高质量发展的关键性、基础性问题。研究从讨论现有评估方法局限出发,提出面向数智环境的文化产品产权价值评估创新方法,说明数智技术评估方法的基本原理和创新性,包括多维属性相结合、主观与客观评... 文化产品产权价值评估是制约文化产业高质量发展的关键性、基础性问题。研究从讨论现有评估方法局限出发,提出面向数智环境的文化产品产权价值评估创新方法,说明数智技术评估方法的基本原理和创新性,包括多维属性相结合、主观与客观评估方法相结合、现实价值与未来价值预测相结合等,并就该方法的基本流程进行分析,包括多维指标体系建构、基于大数据的产权收益评估模型应用、产权价值预测推导三个阶段。该方法研究的现实和理论意义在于为文化产品产权价值评估提供系统的理论和方法指导,助推文化产品产权价值链的形成与发展,推进文化产业智能化和高质量发展。 展开更多
关键词 文化产品产权价值评估 数智技术方法 大数据 神经网络
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部