期刊文献+
共找到1,237篇文章
< 1 2 62 >
每页显示 20 50 100
Radar Quantitative Precipitation Estimation Based on the Gated Recurrent Unit Neural Network and Echo-Top Data 被引量:4
1
作者 Haibo ZOU Shanshan WU Miaoxia TIAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第6期1043-1057,共15页
The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). I... The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). In this study, we propose a new method, GRU_Z-ET, by introducing Z and ET as two independent variables into the GRU neural network to conduct the quantitative single-polarization radar precipitation estimation. The performance of GRU_Z-ET is compared with that of the other three methods in three heavy rainfall cases in China during 2018, namely, the traditional Z-R relationship(Z=300R1.4), the optimal Z-R relationship(Z=79R1.68) and the GRU neural network with only Z as the independent input variable(GRU_Z). The results indicate that the GRU_Z-ET performs the best, while the traditional Z-R relationship performs the worst. The performances of the rest two methods are similar.To further evaluate the performance of the GRU_Z-ET, 200 rainfall events with 21882 total samples during May–July of 2018 are used for statistical analysis. Results demonstrate that the spatial correlation coefficients, threat scores and probability of detection between the observed and estimated precipitation are the largest for the GRU_Z-ET and the smallest for the traditional Z-R relationship, and the root mean square error is just the opposite. In addition, these statistics of GRU_Z are similar to those of optimal Z-R relationship. Thus, it can be concluded that the performance of the GRU_ZET is the best in the four methods for the quantitative precipitation estimation. 展开更多
关键词 quantitative precipitation estimation gated Recurrent Unit neural network Z-R relationship echo-top height
在线阅读 下载PDF
A NEURAL NETWORK APPROACH TO GATE MATRIX LAYOUT 被引量:1
2
作者 Zhou Qingshan Zou Yong Hu Jiandong(Dept. of Telecom. Engineering, Beijing University of Posts and Telecommunications, Beijing 100088) 《Journal of Electronics(China)》 1997年第3期209-214,共6页
Gate matrix layout problem plays an important role in integrated circuit design, but its optimization is NP-hard. In this paper, typical gate layout problem is analysed and adapted to neural network representation, fu... Gate matrix layout problem plays an important role in integrated circuit design, but its optimization is NP-hard. In this paper, typical gate layout problem is analysed and adapted to neural network representation, furthermore the simulated results are given. 展开更多
关键词 neural NETWORK gate MATRIX OPTIMIZATION
在线阅读 下载PDF
Minimal Gated Unit for Recurrent Neural Networks 被引量:39
3
作者 Guo-Bing Zhou Jianxin Wu +1 位作者 Chen-Lin Zhang Zhi-Hua Zhou 《International Journal of Automation and computing》 EI CSCD 2016年第3期226-234,共9页
Recurrent neural networks (RNN) have been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN learning is a difficult task, partly because there are many comp... Recurrent neural networks (RNN) have been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN learning is a difficult task, partly because there are many competing and complex hidden units, such as the long short-term memory (LSTM) and the gated recurrent unit (GRU). We propose a gated unit for RNN, named as minimal gated unit (MCU), since it only contains one gate, which is a minimal design among all gated hidden units. The design of MCU benefits from evaluation results on LSTM and GRU in the literature. Experiments on various sequence data show that MCU has comparable accuracy with GRU, but has a simpler structure, fewer parameters, and faster training. Hence, MGU is suitable in RNN's applications. Its simple architecture also means that it is easier to evaluate and tune, and in principle it is easier to study MGU's properties theoretically and empirically. 展开更多
关键词 Recurrent neural network minimal gated unit (MGU) gated unit gate recurrent unit (GRU) long short-term memory(LSTM) deep learning.
原文传递
Learning algorithm and application of quantum BP neural networks based on universal quantum gates 被引量:26
4
作者 Li Panchi Li Shiyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期167-174,共8页
A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is... A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is composed of input, phase rotation, aggregation, reversal rotation and output. In this model, the input is described by qubits, and the output is given by the probability of the state in which (1) is observed. The phase rotation and the reversal rotation are performed by the universal quantum gates. Secondly, the quantum BP neural networks model is constructed, in which the output layer and the hide layer are quantum neurons. With the application of the gradient descent algorithm, a learning algorithm of the model is proposed, and the continuity of the model is proved. It is shown that this model and algorithm are superior to the conventional BP networks in three aspects: convergence speed, convergence rate and robustness, by two application examples of pattern recognition and function approximation. 展开更多
关键词 quantum computing universal quantum gate quantum neuron quantum neural networks
在线阅读 下载PDF
Real-time analysis and prediction of shield cutterhead torque using optimized gated recurrent unit neural network 被引量:13
5
作者 Song-Shun Lin Shui-Long Shen Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1232-1240,共9页
An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated rec... An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling. 展开更多
关键词 Earth pressure balance(EPB)shield tunneling Cutterhead torque(CHT)prediction Particle swarm optimization(PSO) gated recurrent unit(GRU)neural network
在线阅读 下载PDF
Gated Neural Network-Based Unsteady Aerodynamic Modeling for Large Angles of Attack
6
作者 DENG Yongtao CHENG Shixin MI Baigang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期432-443,共12页
Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft ... Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling. 展开更多
关键词 large angle of attack unsteady aerodynamic modeling gated neural networks generalization ability
在线阅读 下载PDF
Stacking Ensemble Learning-Based Convolutional Gated Recurrent Neural Network for Diabetes Miletus
7
作者 G.Geetha K.Mohana Prasad 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期703-718,共16页
Diabetes mellitus is a metabolic disease in which blood glucose levels rise as a result of pancreatic insulin production failure.It causes hyperglycemia and chronic multiorgan dysfunction,including blindness,renal fai... Diabetes mellitus is a metabolic disease in which blood glucose levels rise as a result of pancreatic insulin production failure.It causes hyperglycemia and chronic multiorgan dysfunction,including blindness,renal failure,and cardi-ovascular disease,if left untreated.One of the essential checks that are needed to be performed frequently in Type 1 Diabetes Mellitus is a blood test,this procedure involves extracting blood quite frequently,which leads to subject discomfort increasing the possibility of infection when the procedure is often recurring.Exist-ing methods used for diabetes classification have less classification accuracy and suffer from vanishing gradient problems,to overcome these issues,we proposed stacking ensemble learning-based convolutional gated recurrent neural network(CGRNN)Metamodel algorithm.Our proposed method initially performs outlier detection to remove outlier data,using the Gaussian distribution method,and the Box-cox method is used to correctly order the dataset.After the outliers’detec-tion,the missing values are replaced by the data’s mean rather than their elimina-tion.In the stacking ensemble base model,multiple machine learning algorithms like Naïve Bayes,Bagging with random forest,and Adaboost Decision tree have been employed.CGRNN Meta model uses two hidden layers Long-Short-Time Memory(LSTM)and Gated Recurrent Unit(GRU)to calculate the weight matrix for diabetes prediction.Finally,the calculated weight matrix is passed to the soft-max function in the output layer to produce the diabetes prediction results.By using LSTM-based CG-RNN,the mean square error(MSE)value is 0.016 and the obtained accuracy is 91.33%. 展开更多
关键词 Diabetes mellitus convolutional gated recurrent neural network Gaussian distribution box-cox predict diabetes
在线阅读 下载PDF
基于门控循环单元的局域网络总线入侵智能检测研究
8
作者 张国志 《现代电子技术》 北大核心 2026年第2期54-58,共5页
为提高实验室局域网络总线入侵检测的时效性与准确性,设计一种基于门控循环单元的总线入侵智能检测方法。对仅包含两种状态的定性特征进行二值化处理,对包含三种或更多类别的特征,通过one-hot编码将其转换为向量特征;再对数据集进行规... 为提高实验室局域网络总线入侵检测的时效性与准确性,设计一种基于门控循环单元的总线入侵智能检测方法。对仅包含两种状态的定性特征进行二值化处理,对包含三种或更多类别的特征,通过one-hot编码将其转换为向量特征;再对数据集进行规范化调整,平衡不同量级的数据特征。为提高检测上限,使用结合聚类的欠采样算法构建平衡数据集,融合门控循环单元(GRU)与卷积神经网络(CNN)构建CNN-GRU入侵检测模型,以实现局域网络总线入侵的智能、高效检测。实验测试结果表明,在检测不同攻击时,所设计方法的Micro-F_(1)和Macro-F_(1)指标均较高,对于不同攻击的检测耗时均低于0.2 s。 展开更多
关键词 入侵检测 局域网络总线 门控循环单元 卷积神经网络 混合采样 one-hot编码
在线阅读 下载PDF
基于CNN-GRU的桥梁移动荷载识别方法
9
作者 刘刚 孙海鹏 《广州建筑》 2026年第1期78-82,共5页
桥梁长期服役期间承受的移动荷载是评估其运行状态与剩余寿命的核心指标,但现有荷载识别方法普遍依赖高保真有限元模型,对噪声敏感,且难以在传感器稀疏布设条件下同步反演车辆重量与速度等多参数。针对这一问题,本文提出一种基于卷积神... 桥梁长期服役期间承受的移动荷载是评估其运行状态与剩余寿命的核心指标,但现有荷载识别方法普遍依赖高保真有限元模型,对噪声敏感,且难以在传感器稀疏布设条件下同步反演车辆重量与速度等多参数。针对这一问题,本文提出一种基于卷积神经网络(CNN)与门控循环单元(GRU)相结合的轻量级多任务学习模型,仅使用跨中及四分之一跨加速度作为唯一输入,先通过CNN提取局部时频特征,再结合GRU捕获全局时序依赖,末端并行输出车辆总重与行驶速度,以实现对车辆总荷载与行驶速度的联合预测。研究结果表明,该方法收敛速度快,预测均方误差保持在较低水平。本研究所提CNN-GRU模型具有较高的预测精度与泛化能力,在一定噪声水平下仍保持较好的鲁棒性,为桥梁移动荷载识别提供了一种可行的轻量化智能化解决方案。 展开更多
关键词 桥梁健康监测 移动荷载识别 卷积神经网络 门控循环单元
在线阅读 下载PDF
基于VMD-MSSST时频增强和ResNet多模态融合的故障诊断方法
10
作者 冯煜尧 刘承全 +3 位作者 张雨璠 薛亚晨 郑小霞 符杨 《机电工程》 北大核心 2026年第1期73-81,148,共10页
针对振动信号的非线性、非平稳性导致的故障特征提取与诊断难的问题,提出了一种基于VMD-MSSST时频增强和ResNet多模态融合的诊断方法。首先,利用变分模态分解将振动信号分解为多个本征模态函数,结合峭度与相关系数设定筛选准则,提取了... 针对振动信号的非线性、非平稳性导致的故障特征提取与诊断难的问题,提出了一种基于VMD-MSSST时频增强和ResNet多模态融合的诊断方法。首先,利用变分模态分解将振动信号分解为多个本征模态函数,结合峭度与相关系数设定筛选准则,提取了包含故障信息的有效模态,对信号进行了重构,并引入了多重同步挤压S变换,进行了时频特征增强,将能量集中到瞬时频率轨迹上,实现了对冲击故障特征的精准提取目的;然后,构建了多模态特征融合的故障诊断模型,利用ResNet提取了时频图像的深层空间特征、双向门控循环支路捕获时序特征、卷积注意力支路强化故障敏感频带,并在特征层对信息进行了融合;最后,以凯斯西储大学的轴承故障数据集为研究对象,对十种不同状态的振动信号进行了消融实验和对比实验,并在风机现场轴承数据上和传统方法进行了诊断对比。研究结果表明:采用基于VMD-MSSST时频增强和ResNet多模态融合的诊断方法,平均分类精度可达99.19%;通过可视化分析验证了该方法能实现故障特征的清晰聚类目标,说明VMD预处理与MSSST增强的协同作用能更有效地提取故障特征信息,双分支融合结构可实现模型对信号特征的充分挖掘目的,为复杂工况下的轴承故障诊断提供参考。 展开更多
关键词 故障诊断模型 滚动轴承 变分模态分解 多重同步挤压S变换 残差网络 门控循环单元 注意力模块
在线阅读 下载PDF
融合液态神经网络与多层级图卷积的关系抽取方法
11
作者 李子亮 李兴春 《计算机应用研究》 北大核心 2026年第1期69-75,共7页
针对自然语言处理中关系抽取任务在建模长距离依赖与复杂语义理解方面的不足,提出了一种融合液态神经网络与多层级图卷积网络的关系抽取模型BLGAM。该模型首先利用BERT对输入句子进行上下文语义编码,获得初始文本表示;随后通过基于闭式... 针对自然语言处理中关系抽取任务在建模长距离依赖与复杂语义理解方面的不足,提出了一种融合液态神经网络与多层级图卷积网络的关系抽取模型BLGAM。该模型首先利用BERT对输入句子进行上下文语义编码,获得初始文本表示;随后通过基于闭式连续时间解的液态神经网络捕捉动态时序特征,建模长距离依赖信息;同时结合依存句法和实体结构构建多层级图卷积网络,提取局部与全局结构化语义特征;最后采用注意力门控机制对时序特征与结构特征进行加权融合,并通过多层感知机提升实体对关系识别的准确性与鲁棒性。在NYT和WebNLG两个公开数据集上的实验结果表明,该模型的F 1值分别达到92.6%和92.1%,均优于现有主流基线,验证了液态神经网络在长距离依赖建模与动态信息捕捉方面的显著优势,以及多层级图卷积网络在挖掘实体间隐含结构联系上的补充作用。该方法为复杂语义场景下的关系抽取提供了高效解决方案。 展开更多
关键词 关系抽取 液态神经网络 图卷积网络 预训练模型 注意力门控 多层感知机
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别 被引量:2
12
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
Activin A maintains cerebral cortex neuronal survival and increases voltage-gated Na^+ neuronal current 被引量:4
13
作者 Jingyan Ge Yinan Wang +3 位作者 Haiyan Liu Fangfang Chen Xueling Cui Zhonghui Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第19期1464-1469,共6页
Activin A, which was first described in 1986, has been shown to maintain hippocampal neuronal survival. Activin A increases intracellular free Ca2+ via L-type Ca2+ channels. Our previous study showed that activin A ... Activin A, which was first described in 1986, has been shown to maintain hippocampal neuronal survival. Activin A increases intracellular free Ca2+ via L-type Ca2+ channels. Our previous study showed that activin A promotes neurite growth of dorsal root ganglia in embryonic chickens and inhibits nitric oxide secretion. The present study demonstrated for the first time that activin A could maintain cerebral cortex neuronal survival in vitro for a long period, and that activin A was shown to increase voltage-gated Na+ current (/Na) in Neuro-2a cells, which was recorded by patch clamp technique. The present study revealed a novel mechanism for activin A, as well as the influence of activin A on neurons by regulating expressions of vasoactive intestine peptide and inducible nitric oxide synthase. 展开更多
关键词 activin A cerebral cortex neuron voltage-gated sodium current neuro-2a cell neural regeneration
在线阅读 下载PDF
A HybridManufacturing ProcessMonitoringMethod Using Stacked Gated Recurrent Unit and Random Forest
14
作者 Chao-Lung Yang Atinkut Atinafu Yilma +2 位作者 Bereket Haile Woldegiorgis Hendrik Tampubolon Hendri Sutrisno 《Intelligent Automation & Soft Computing》 2024年第2期233-254,共22页
This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart ... This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems. 展开更多
关键词 Smart manufacturing process monitoring quality control gated recurrent unit neural network random forest
在线阅读 下载PDF
基于CNN-GRU组合神经网络的锂电池寿命预测模型研究 被引量:1
15
作者 张安安 谢琳惺 杨威 《电测与仪表》 北大核心 2025年第7期77-84,共8页
针对锂电池容量及内阻等直接性能参数获取困难,导致锂电池寿命预测准确度不高的问题,提出一种基于卷积神经网络(convolutional neural network,CNN)和门控循环单元(gated recurrent unit,GRU)组合神经网络的锂电池寿命预测模型。文章从... 针对锂电池容量及内阻等直接性能参数获取困难,导致锂电池寿命预测准确度不高的问题,提出一种基于卷积神经网络(convolutional neural network,CNN)和门控循环单元(gated recurrent unit,GRU)组合神经网络的锂电池寿命预测模型。文章从锂电池充电和放电实验中提取恒流充电时间间隔、恒压充电时间间隔、放电温度峰值时间及循环次数四种间接健康因子,建立Pearson及Spearman相关系数;构建基于CNN-GRU组合神经网络的锂电池寿命预测模型;通过实际数据验证提取健康因子的合理性,并将预测结果与支持向量机模型、长短期记忆(long short-term memory,LSTM)模型、GRU模型、CNN-LSTM模型对比分析,验证所提模型的优越性及有效性。 展开更多
关键词 锂电池 健康因子 相关系数 卷积神经网络 门控循环单元
在线阅读 下载PDF
基于改进BILSTM/BIGRU的多特征短期负荷预测 被引量:2
16
作者 王昊 王树东 唐伟强 《计算机与数字工程》 2025年第3期755-759,864,共6页
针对传统神经网络在多输入特征下预测时间较长且精度欠佳的问题,论文提出了一种基于深度双向策略改进的长短期记忆神经网络与门控循环单元神经网络相结合的短期负荷预测模型。该模型采用自适应噪声完整集成经验模态算法将负荷数据进行分... 针对传统神经网络在多输入特征下预测时间较长且精度欠佳的问题,论文提出了一种基于深度双向策略改进的长短期记忆神经网络与门控循环单元神经网络相结合的短期负荷预测模型。该模型采用自适应噪声完整集成经验模态算法将负荷数据进行分解,降低负荷数据复杂度;利用互信息主成分分析法提取原始多维输入变量,降低主成分因子;然后通过改进鲸鱼优化算法对构建模型进行寻参优化。以中国某地区的负荷数据作为算例,将论文所构建模型与其它模型进行了对比分析,预测结果表明,论文所构建的模型能够缩短预测的时间,提高负荷预测的精度。 展开更多
关键词 负荷预测 深度双向策略 改进鲸鱼优化算法 长短期记忆神经网络 门控循坏单元神经网络
在线阅读 下载PDF
多通道句法门控图神经网络用于句子级情感分析 被引量:1
17
作者 张吴波 邹旺 +2 位作者 熊黎 戴顺鄂 吴文欢 《计算机工程与应用》 北大核心 2025年第8期135-144,共10页
情感分析技术是自然语言处理领域的一项重要任务。然而,现阶段文档级图神经网络的图构建复杂且需要占用大量的内存资源。在线评论文本一般由短句组成,文档级图神经网络进行情感分析的效率较低。此外,现有工作中句子级图神经网络未能充... 情感分析技术是自然语言处理领域的一项重要任务。然而,现阶段文档级图神经网络的图构建复杂且需要占用大量的内存资源。在线评论文本一般由短句组成,文档级图神经网络进行情感分析的效率较低。此外,现有工作中句子级图神经网络未能充分结合文本的单词特征、依存特征和词性特征。针对以上问题,提出一种多通道句法门控图神经网络的句子级情感分析方法(MSGNN)。该模型以句子的依存句法关系图为骨架,词性特征、单词特征和依存特征作为节点特征信息;利用三通道的门控图神经网络分别学习三种特征;采用图卷积神经网络聚合节点的特征信息。在SST-1、SST-2、MR三种基准数据集上的实验结果表明该模型相比基线模型的性能有所提升。 展开更多
关键词 情感分析 句子级图神经网络 依存特征 门控图神经网络
在线阅读 下载PDF
基于VMD-1DCNN-GRU的轴承故障诊断 被引量:2
18
作者 宋金波 刘锦玲 +2 位作者 闫荣喜 王鹏 路敬祎 《吉林大学学报(信息科学版)》 2025年第1期34-42,共9页
针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausd... 针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausdorff Distance)完成去噪,尽可能保留原始信号的特征。其次,将选择的有效信号输入一维卷积神经网络(1DCNN:1D Convolutional Neural Networks)和门控循环单元(GRU:Gate Recurrent Unit)相结合的网络结构(1DCNN-GRU)中完成数据的分类,实现轴承的故障诊断。通过与常见的轴承故障诊断方法比较,所提VMD-1DCNN-GRU模型具有最高的准确性。实验结果验证了该模型对轴承故障有效分类的可行性,具有一定的研究意义。 展开更多
关键词 故障诊断 深度学习 变分模态分解 一维卷积神经网络 门控循环单元
在线阅读 下载PDF
具有注意力机制的CNN-GRU模型在风电机组异常状态预警中的应用 被引量:1
19
作者 马良玉 胡景琛 +1 位作者 段晓冲 黄日灏 《南京信息工程大学学报》 北大核心 2025年第3期374-383,共10页
针对风电机组长期在恶劣环境中工作导致故障频发的问题,提出一种具有注意力机制的卷积神经网络(CNN)及门控循环单元(GRU)的异常工况预警方法.利用快速密度峰值聚类和局部离群因子算法对风电机组数据采集与监控系统中的异常数据进行清洗... 针对风电机组长期在恶劣环境中工作导致故障频发的问题,提出一种具有注意力机制的卷积神经网络(CNN)及门控循环单元(GRU)的异常工况预警方法.利用快速密度峰值聚类和局部离群因子算法对风电机组数据采集与监控系统中的异常数据进行清洗,结合机理分析及极端梯度提升(XGBoost)算法对特征重要性的评估确定模型的输入输出参数,进而采用具有注意力机制的CNN-GRU模型建立风电机组正常运行工况的性能预测模型.以该预测模型为基础,利用时移滑动窗口构建风电机组状态评价指标,并结合统计学中的区间估计法确定预警阈值,最终实现机组异常工况预警.应用某风电机组真实历史故障数据进行实验,结果表明,本文所提方法能够准确地对异常状态进行提前识别和预警,有利于运维人员及时处理故障,保证机组安全稳定运行. 展开更多
关键词 风电机组 卷积神经网络 门控循环单元 注意力机制 故障预警
在线阅读 下载PDF
融合全局和属性信息的双图神经网络会话推荐 被引量:1
20
作者 杨兴耀 齐正 +3 位作者 张祖莲 于炯 陈嘉颖 王东晓 《计算机工程与设计》 北大核心 2025年第3期770-778,共9页
为解决现有会话推荐未利用项目的额外属性信息,以及忽略全局项目之间交互问题,提出一种融合全局和属性信息的双图神经网络会话推荐模型。在会话序列中捕获项目显式和隐式信息,将项目之间的交互关系构建成全局图和属性图,在全局图中利用... 为解决现有会话推荐未利用项目的额外属性信息,以及忽略全局项目之间交互问题,提出一种融合全局和属性信息的双图神经网络会话推荐模型。在会话序列中捕获项目显式和隐式信息,将项目之间的交互关系构建成全局图和属性图,在全局图中利用一个门控机制捕获显式信息,在属性图中将一个自注意力机制嵌入到图注意力网络中学习项目隐式信息。利用池化操作将两种信息融合,根据最终嵌入计算预测评分。实验结果表明,模型在3个公开数据集Diginetica、Tmall和30Music上的精确度和平均倒数排名优于新近基线模型,验证了模型的有效性。 展开更多
关键词 推荐系统 会话推荐 图神经网络 注意力机制 门控机制 图注意力网络 自注意力机制
在线阅读 下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部