期刊文献+
共找到27,910篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model
1
作者 ZHANG Ping LU Mingtai +1 位作者 LU Tiantian YUE Yinghu 《材料导报》 北大核心 2026年第2期20-28,共9页
In modern ZnO varistors,traditional aging mechanisms based on increased power consumption are no longer relevant due to reduced power consumption during DC aging.Prolonged exposure to both AC and DC voltages results i... In modern ZnO varistors,traditional aging mechanisms based on increased power consumption are no longer relevant due to reduced power consumption during DC aging.Prolonged exposure to both AC and DC voltages results in increased leakage current,decreased breakdown voltage,and lower nonlinearity,ultimately compromising their protective performance.To investigate the evolution in electrical properties during DC aging,this work developed a finite element model based on Voronoi networks and conducted accelerated aging tests on commercial varistors.Throughout the aging process,current-voltage characteristics and Schottky barrier parameters were measured and analyzed.The results indicate that when subjected to constant voltage,current flows through regions with larger grain sizes,forming discharge channels.As aging progresses,the current focus increases on these channels,leading to a decline in the varistor’s overall performance.Furthermore,analysis of the Schottky barrier parameters shows that the changes in electrical performance during aging are non-monotonic.These findings offer theoretical support for understanding the aging mechanisms and condition assessment of modern stable ZnO varistors. 展开更多
关键词 ZnO varistors Voronoi network DC aging finite element method(FEM) current distribution double Schottky barrier theory
在线阅读 下载PDF
Investigating the potential mechanisms of Wenqing Yin against atopic dermatitis based on network pharmacology,experimental pharmacology,and molecular docking
2
作者 Yi Wang Zhen Liu +3 位作者 Si-Man Li Lin Lin Wei Dai Meng-Yue Ren 《Traditional Medicine Research》 2026年第2期1-11,共11页
Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY o... Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY on AD.Methods:The DNFB-induced mouse models of AD were established to investigate the therapeutic effects of WQY on AD.The symptoms of AD in the ears and backs of the mice were assessed,while inflammatory factors in the ear were quantified using quantitative real-time-polymerase chain reaction(qRT-PCR),and the percentages of CD4^(+)and CD8^(+)cells in the spleen were analyzed through flow cytometry.The compounds in WQY were identified using ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis and the key targets and pathways of WQY to treat AD were predicted by network pharmacology.Subsequently,the key genes were tested and verified by qRT-PCR,and the potential active components and target proteins were verified by molecular docking.Results:WQY relieved the AD symptoms and histopathological injuries in the ear and back skin of mice with AD.Meanwhile,WQY significantly reduced the levels of inflammatory factors IL-6 and IL-1βin ear tissue,as well as the ratio of CD4^(+)/CD8^(+)cells in spleen.Additionally,a total of 142 compounds were identified from the water extract of WQY by UPLC-Orbitrap-MS/MS.39 key targets related to AD were screened out by network pharmacology methods.The KEGG analysis indicated that the effects of WQY were primarily mediated through pathways associated with Toll-like receptor signaling and T cell receptor signaling.Moreover,the results of qRT-PCR demonstrated that WQY significantly reduced the mRNA expressions of IL-4,IL-10,GATA3 and FOXP3,and molecular docking simulation verified that the active components of WQY had excellent binding abilities with IL-4,IL-10,GATA3 and FOXP3 proteins.Conclusion:The present study demonstrated that WQY effectively relieved AD symptoms in mice,decreased the inflammatory factors levels,regulated the balance of CD4^(+)and CD8^(+)cells,and the mechanism may be associated with the suppression of Th2 and Treg cell immune responses. 展开更多
关键词 Wenqing Yin atopic dermatitis mouse model UPLC-Orbitrap-MS/MS network pharmacology
暂未订购
Artificial Neural Network Model for Thermal Conductivity Estimation of Metal Oxide Water-Based Nanofluids
3
作者 Nikhil S.Mane Sheetal Kumar Dewangan +3 位作者 Sayantan Mukherjee Pradnyavati Mane Deepak Kumar Singh Ravindra Singh Saluja 《Computers, Materials & Continua》 2026年第1期316-331,共16页
The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids.Researchers rely on experimental investigations to explore nanofluid properties,as it is a n... The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids.Researchers rely on experimental investigations to explore nanofluid properties,as it is a necessary step before their practical application.As these investigations are time and resource-consuming undertakings,an effective prediction model can significantly improve the efficiency of research operations.In this work,an Artificial Neural Network(ANN)model is developed to predict the thermal conductivity of metal oxide water-based nanofluid.For this,a comprehensive set of 691 data points was collected from the literature.This dataset is split into training(70%),validation(15%),and testing(15%)and used to train the ANN model.The developed model is a backpropagation artificial neural network with a 4–12–1 architecture.The performance of the developed model shows high accuracy with R values above 0.90 and rapid convergence.It shows that the developed ANN model accurately predicts the thermal conductivity of nanofluids. 展开更多
关键词 Artificial neural networks nanofluids thermal conductivity PREDICTION
在线阅读 下载PDF
Recurrent MAPPO for Joint UAV Trajectory and Traffic Offloading in Space-Air-Ground Integrated Networks
4
作者 Zheyuan Jia Fenglin Jin +1 位作者 Jun Xie Yuan He 《Computers, Materials & Continua》 2026年第1期447-461,共15页
This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential g... This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential growth of mobile devices and data traffic has substantially increased network congestion,particularly in urban areas and regions with limited terrestrial infrastructure.Our approach jointly optimizes unmanned aerial vehicle(UAV)trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput,minimize energy consumption,and maintain equitable resource distribution.The proposed RMAPPO framework incorporates recurrent neural networks(RNNs)to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent reinforcement learning architecture to reduce communication overhead while improving system robustness.The proposed RMAPPO algorithm was evaluated through simulation experiments,with the results indicating that it significantly enhances the cumulative traffic offloading rate of nodes and reduces the energy consumption of UAVs. 展开更多
关键词 Space-air-ground integrated networks UAV traffic offloading reinforcement learning
在线阅读 下载PDF
Defect Identification Method of Power Grid Secondary Equipment Based on Coordination of Knowledge Graph and Bayesian Network Fusion
5
作者 Jun Xiong Peng Yang +1 位作者 Bohan Chen Zeming Chen 《Energy Engineering》 2026年第1期296-313,共18页
The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermo... The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermoperation.The complex relationship between the defect phenomenon andmulti-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods,which limits the real-time and accuracy of defect identification.Therefore,a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed.The defect data of secondary equipment is transformed into the structured knowledge graph through knowledge extraction and fusion technology.The knowledge graph of power grid secondary equipment is mapped to the Bayesian network framework,combined with historical defect data,and introduced Noisy-OR nodes.The prior and conditional probabilities of the Bayesian network are then reasonably assigned to build a model that reflects the probability dependence between defect phenomena and potential causes in power grid secondary equipment.Defect identification of power grid secondary equipment is achieved by defect subgraph search based on the knowledge graph,and defect inference based on the Bayesian network.Practical application cases prove this method’s effectiveness in identifying secondary equipment defect causes,improving identification accuracy and efficiency. 展开更多
关键词 Knowledge graph Bayesian network secondary equipment defect identification
在线阅读 下载PDF
Combined Fault Tree Analysis and Bayesian Network for Reliability Assessment of Marine Internal Combustion Engine
6
作者 Ivana Jovanović Çağlar Karatuğ +1 位作者 Maja Perčić Nikola Vladimir 《哈尔滨工程大学学报(英文版)》 2026年第1期239-258,共20页
This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for ... This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels. 展开更多
关键词 Fault tree analysis Bayesian network RELIABILITY REDUNDANCY Internal combustion engine
在线阅读 下载PDF
P4LoF: Scheduling Loop-Free Multi-Flow Updates in Programmable Networks
7
作者 Jiqiang Xia Qi Zhan +2 位作者 Le Tian Yuxiang Hu Jianhua Peng 《Computers, Materials & Continua》 2026年第1期1236-1254,共19页
The rapid growth of distributed data-centric applications and AI workloads increases demand for low-latency,high-throughput communication,necessitating frequent and flexible updates to network routing configurations.H... The rapid growth of distributed data-centric applications and AI workloads increases demand for low-latency,high-throughput communication,necessitating frequent and flexible updates to network routing configurations.However,maintaining consistent forwarding states during these updates is challenging,particularly when rerouting multiple flows simultaneously.Existing approaches pay little attention to multi-flow update,where improper update sequences across data plane nodes may construct deadlock dependencies.Moreover,these methods typically involve excessive control-data plane interactions,incurring significant resource overhead and performance degradation.This paper presents P4LoF,an efficient loop-free update approach that enables the controller to reroute multiple flows through minimal interactions.P4LoF first utilizes a greedy-based algorithm to generate the shortest update dependency chain for the single-flow update.These chains are then dynamically merged into a dependency graph and resolved as a Shortest Common Super-sequence(SCS)problem to produce the update sequence of multi-flow update.To address deadlock dependencies in multi-flow updates,P4LoF builds a deadlock-fix forwarding model that leverages the flexible packet processing capabilities of the programmable data plane.Experimental results show that P4LoF reduces control-data plane interactions by at least 32.6%with modest overhead,while effectively guaranteeing loop-free consistency. 展开更多
关键词 network management update consistency programmable data plane P4
在线阅读 下载PDF
Multi-Constraint Generative Adversarial Network-Driven Optimization Method for Super-Resolution Reconstruction of Remote Sensing Images
8
作者 Binghong Zhang Jialing Zhou +3 位作者 Xinye Zhou Jia Zhao Jinchun Zhu Guangpeng Fan 《Computers, Materials & Continua》 2026年第1期779-796,共18页
Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods ex... Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures. 展开更多
关键词 Charbonnier loss function deep learning generative adversarial network perceptual loss remote sensing image super-resolution
在线阅读 下载PDF
Optimal Dispatch of Urban Distribution Networks Considering Virtual Power Plant Coordination under Extreme Scenarios
9
作者 Yong Li Yuxuan Chen +4 位作者 Jiahui He Guowei He Chenxi Dai Jingjing Tong Wenting Lei 《Energy Engineering》 2026年第1期204-220,共17页
Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the... Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants(VPPs).The proposed strategy improves systemflexibility and responsiveness by optimizing the power adjustment of flexible resources.In the proposed strategy,theGaussian Process Regression(GPR)is firstly employed to determine the adjustable range of aggregated power within the VPP,facilitating an assessment of its potential contribution to power supply support.Then,an optimal dispatch model based on a leader-follower game is developed to maximize the benefits of the VPP and flexible resources while guaranteeing the power balance at the same time.To solve the proposed optimal dispatch model efficiently,the constraints of the problem are reformulated and resolved using the Karush-Kuhn-Tucker(KKT)optimality conditions and linear programming duality theorem.The effectiveness of the strategy is illustrated through a detailed case study. 展开更多
关键词 Urban distribution network virtual power plant power supply support leader-follower optimization game extreme weather scenarios
在线阅读 下载PDF
An Integrated Approach to Condition-Based Maintenance Decision-Making of Planetary Gearboxes: Combining Temporal Convolutional Network Auto Encoders with Wiener Process
10
作者 Bo Zhu Enzhi Dong +3 位作者 Zhonghua Cheng Xianbiao Zhan Kexin Jiang Rongcai Wang 《Computers, Materials & Continua》 2026年第1期661-686,共26页
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s... With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes. 展开更多
关键词 Temporal convolutional network autoencoder full lifecycle degradation experiment nonlinear Wiener process condition-based maintenance decision-making fault monitoring
在线阅读 下载PDF
FAULT LOCATION AND RECORDING SYSTEM OF TRANSMISSION LINES BASED ON COMPUTER NETWORK 被引量:1
11
作者 贺家李 孙雅明 贺继红 《Transactions of Tianjin University》 EI CAS 1997年第1期17-23,共7页
In this paper a fault location and recording system based on a computer network is presented. A brief description of the system structure and main features are given. Emphasis is placed on the accurate fault location ... In this paper a fault location and recording system based on a computer network is presented. A brief description of the system structure and main features are given. Emphasis is placed on the accurate fault location method for extra high voltage and long distance transmission lines. 展开更多
关键词 computer network fault location recording system
在线阅读 下载PDF
Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain 被引量:3
12
作者 Takahiko Nagamine 《World Journal of Clinical Cases》 SCIE 2025年第3期66-68,共3页
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u... Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field. 展开更多
关键词 Virtual reality PAIN ANXIETY Salience network Default mode network
在线阅读 下载PDF
Offload Strategy for Edge Computing in Satellite Networks Based on Software Defined Network 被引量:1
13
作者 Zhiguo Liu Yuqing Gui +1 位作者 Lin Wang Yingru Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期863-879,共17页
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us... Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency. 展开更多
关键词 Satellite network edge computing task scheduling computing offloading
在线阅读 下载PDF
Leveraging ROTI map derived from Indonesian GNSS receiver network for advancing study of Equatorial Plasma Bubble in Southeast/East Asia 被引量:1
14
作者 Prayitno Abadi Ihsan N.Muafiry +8 位作者 Teguh N.Pratama Angga Y.Putra Suraina Gatot H.Pramono Sidik T.Wibowo Febrylian F.Chabibi Umar A.Ahmad Wildan P.Tresna Asnawi 《Earth and Planetary Physics》 EI CAS 2025年第1期101-116,共16页
This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signa... This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signals and degrade positioning accuracy.Managed by the Indonesian Geospatial Information Agency(BIG),the Indonesia Continuously Operating Reference Station(Ina-CORS)network comprises over 300 GNSS receivers spanning equatorial to southern low-latitude regions.Ina-CORS is uniquely situated to monitor EPB generation,zonal drift,and dissipation across Southeast Asia.We provide a practical tool for EPB research,by sharing two-dimensional rate of Total Electron Content(TEC)change index(ROTI)derived from this network.We generate ROTI maps with a 10-minute resolution,and samples from May 2024 are publicly available for further scientific research.Two preliminary findings from the ROTI maps of Ina-CORS are noteworthy.First,the Ina-CORS ROTI maps reveal that the irregularities within a broader EPB structure persist longer,increasing the potential for these irregularities to migrate farther eastward.Second,we demonstrate that combined ROTI maps from Ina-CORS and GNSS receivers in East Asia and Australia can be used to monitor the development of ionospheric irregularities in Southeast and East Asia.We have demonstrated the combined ROTI maps to capture the development of ionospheric irregularities in the Southeast/East Asian sector during the G5 Geomagnetic Storm on May 11,2024.We observed simultaneous ionospheric irregularities in Japan and Australia,respectively propagating northwestward and southwestward,before midnight,whereas Southeast Asia’s equatorial and low-latitude regions exhibited irregularities post-midnight.By sharing ROTI maps from Indonesia and integrating them with regional GNSS networks,researchers can conduct comprehensive EPB studies,enhancing the understanding of EPB behavior across Southeast and East Asia and contributing significantly to ionospheric research. 展开更多
关键词 Equatorial Plasma Bubble(EPB) GNSS receivers’network Indonesia Continuously Operating Reference Station(Ina-CORS) ionospheric map Rate of TEC change index(ROTI)map
在线阅读 下载PDF
Metabolomics, network pharmacology, and microbiome analyses uncover the mechanisms of the Chinese herbal formula for the improvement of meat quality in spent hens 被引量:3
15
作者 Zhihua Li Abul Kalam Azad +6 位作者 Chengwen Meng Xiangfeng Kong Jue Gui Wenchao Lin Yadong Cui Wei Lan Qinghua He 《Journal of Animal Science and Biotechnology》 2025年第2期948-964,共17页
Background Meat originating from the spent hen is an important source of poultry meat production;however,multiple factors cause the decline in the meat quality of spent hens.Chinese herbs have been widely used as medi... Background Meat originating from the spent hen is an important source of poultry meat production;however,multiple factors cause the decline in the meat quality of spent hens.Chinese herbs have been widely used as medi-cine for a long time to prevent diseases and as nutrient supplements to improve the product quality.This experi-ment explored the effects of adding 1.0%Chinese herbal formula(CHF,including 0.30%Leonurus japonicus Houtt.,0.20%Salvia miltiorrhiza Bge.,0.25%Ligustrum lucidum Ait.,and 0.25%Taraxacum mongolicum Hand.-Mazz.)for 120 d to the spent hens’diet through metabolomics,network pharmacology,and microbiome strategies.Results The results indicated that CHF supplementation improved the meat quality by reducing drip loss(P<0.05),b*value(P=0.058),and shear force(P=0.099)and increasing cooked meat percentage(P=0.054)and dry matter(P<0.05)of breast muscle.The addition of CHF improved the nutritional value of breast muscle by increasing(P<0.05)the content of C18:2n-6,n-6/n-3 polyunsaturated fatty acids(PUFA),total PUFA,PUFA-to-saturated fatty acids(SFA)ratio,and hypocholesterolemic-to-hypercholesterolemic ratio,and tending to increase serine content(P=0.069).The targeted metabolomics analysis revealed that the biosynthesis of SFA,linoleic acid metabolism,fatty acid degradation,fatty acid elongation,and fatty acid biosynthesis pathways were enriched by CHF supplementation.Furthermore,the network pharmacology analysis indicated that CHF was closely associated with oxidative stress and lipid metabo-lism.The CHF supplementation increased the glutathione peroxidase level(P<0.05)and upregulated gene expres-sion related to the Nrf2 pathway(including HO-1,P<0.05;Nrf2,P=0.098;CAT,P=0.060;GPX1,P=0.063;and SOD2,P=0.052)and lipid metabolism(including PPARγ,P<0.05;SREBP1,P=0.059;and CPT1A,P=0.058).Additionally,CHF supplementation increased Firmicutes and decreased Bacteroidetes,Spirochaetes,and Synergistetes abundances(P<0.05),which may contribute to better meat quality.Conclusions Our results suggest that CHF supplementation improved the quality and nutritional value of meat,which will provide a theoretical basis for the utilization of CHF as a feed additive in spent hens’diets. 展开更多
关键词 Cecal microbiota Chinese herbal formula Fatty acid Meat quality network pharmacology Spent hens
在线阅读 下载PDF
Integration of deep neural network modeling and LC-MS-based pseudo-targeted metabolomics to discriminate easily confused ginseng species 被引量:2
16
作者 Meiting Jiang Yuyang Sha +8 位作者 Yadan Zou Xiaoyan Xu Mengxiang Ding Xu Lian Hongda Wang Qilong Wang Kefeng Li De-an Guo Wenzhi Yang 《Journal of Pharmaceutical Analysis》 2025年第1期126-137,共12页
Metabolomics covers a wide range of applications in life sciences,biomedicine,and phytology.Data acquisition(to achieve high coverage and efficiency)and analysis(to pursue good classification)are two key segments invo... Metabolomics covers a wide range of applications in life sciences,biomedicine,and phytology.Data acquisition(to achieve high coverage and efficiency)and analysis(to pursue good classification)are two key segments involved in metabolomics workflows.Various chemometric approaches utilizing either pattern recognition or machine learning have been employed to separate different groups.However,insufficient feature extraction,inappropriate feature selection,overfitting,or underfitting lead to an insufficient capacity to discriminate plants that are often easily confused.Using two ginseng varieties,namely Panax japonicus(PJ)and Panax japonicus var.major(PJvm),containing the similar ginsenosides,we integrated pseudo-targeted metabolomics and deep neural network(DNN)modeling to achieve accurate species differentiation.A pseudo-targeted metabolomics approach was optimized through data acquisition mode,ion pairs generation,comparison between multiple reaction monitoring(MRM)and scheduled MRM(sMRM),and chromatographic elution gradient.In total,1980 ion pairs were monitored within 23 min,allowing for the most comprehensive ginseng metabolome analysis.The established DNN model demonstrated excellent classification performance(in terms of accuracy,precision,recall,F1 score,area under the curve,and receiver operating characteristic(ROC))using the entire metabolome data and feature-selection dataset,exhibiting superior advantages over random forest(RF),support vector machine(SVM),extreme gradient boosting(XGBoost),and multilayer perceptron(MLP).Moreover,DNNs were advantageous for automated feature learning,nonlinear modeling,adaptability,and generalization.This study confirmed practicality of the established strategy for efficient metabolomics data analysis and reliable classification performance even when using small-volume samples.This established approach holds promise for plant metabolomics and is not limited to ginseng. 展开更多
关键词 Liquid chromatography-mass spectrometry Pseudo-targeted metabolomics Deep neural network Species differentiation GINSENG
在线阅读 下载PDF
General expert consensus on the application of network pharmacology in the research and development of new traditional Chinese medicine drugs 被引量:2
17
作者 Shao Li Wei Xiao 《Chinese Journal of Natural Medicines》 2025年第2期129-142,共14页
The research and development of new traditional Chinese medicine(TCM)drugs have progressively established a novel system founded on the integration of TCM theory,human experience,and clinical trials(termed the“Three ... The research and development of new traditional Chinese medicine(TCM)drugs have progressively established a novel system founded on the integration of TCM theory,human experience,and clinical trials(termed the“Three Combinations”).However,considering TCM's distinctive features of“syndrome differentiation and treatment”and“multicomponent formulations and complex mechanisms”,current TCM drug development faces challenges such as insufficient understanding of the material basis and the overall mechanism of action and an incomplete evidence chain system.Moreover,significant obstacles persist in gathering human experience data,evaluating clinical efficacy,and controlling the quality of active ingredients,which impede the innovation process in TCM drug development.Network pharmacology,centered on the“network targets”theory,transcends the limitations of the conventional“single target”reductionist research model.It emphasizes the comprehensive effects of disease or syndrome biological networks as targets to elucidate the overall regulatory mechanism of TCM prescriptions.This approach aligns with the holistic perspective of TCM,offering a novel method consistent with TCM's holistic view for investigating the complex mechanisms of TCM and developing new TCM drugs.It is internationally recognized as a“next-generation drug research model”.To advance the research of new tools,methods,and standards for TCM evaluation and to overcome fundamental,critical,and cutting-edge technical challenges in TCM regulation,this consensus aims to explore the characteristics,progress,challenges,applicable pathways,and specific applications of network pharmacology as a new theory,method,and tool in TCM drug development.The goal is to enhance the quality of TCM drug research and development and accelerate the efficiency of developing new TCM products. 展开更多
关键词 network pharmacology Research and development of new traditional Chinese medicine drugs Expert consensus
原文传递
Cross-Domain Time Synchronization in Software-Defined Time-Sensitive Networking 被引量:1
18
作者 Zhang Xiaodong Shou Guochu +2 位作者 Li Hongxing Liu Yaqiong Hu Yihong 《China Communications》 2025年第9期289-306,共18页
The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in... The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in heterogeneous deployments.When multiple TSN networks interconnect over non-TSN networks,all devices in the network need to be syn-chronized by sharing a uniform time reference.How-ever,most non-TSN networks are best-effort.Path delay asymmetry and random noise accumulation can introduce unpredictable time errors during end-to-end time synchronization.These factors can degrade syn-chronization performance.Therefore,cross-domain time synchronization becomes a challenging issue for multiple TSN networks interconnected by non-TSN networks.This paper presents a cross-domain time synchronization scheme that follows the software-defined TSN(SD-TSN)paradigm.It utilizes a com-bined control plane constructed by a coordinate con-troller and a domain controller for centralized control and management of cross-domain time synchroniza-tion.The general operation flow of the cross-domain time synchronization process is designed.The mecha-nism of cross-domain time synchronization is revealed by introducing a synchronization model and an error compensation method.A TSN cross-domain proto-type testbed is constructed for verification.Results show that the scheme can achieve end-to-end high-precision time synchronization with accuracy and sta-bility. 展开更多
关键词 cross-domain time synchronization de-terministic communications error compensation software-defined networking(SDN) time-sensitive networking(TSN)
在线阅读 下载PDF
The Role of Neuroinflammation and Network Anomalies in Drug-Resistant Epilepsy 被引量:1
19
作者 Jianwei Shi Jing Xie +4 位作者 Zesheng Li Xiaosong He Penghu Wei Josemir W Sander Guoguang Zhao 《Neuroscience Bulletin》 2025年第5期881-905,共25页
Epilepsy affects over 50 million people worldwide.Drug-resistant epilepsy(DRE)accounts for up to a third of these cases,and neuro-inflammation is thought to play a role in such cases.Despite being a long-debated issue... Epilepsy affects over 50 million people worldwide.Drug-resistant epilepsy(DRE)accounts for up to a third of these cases,and neuro-inflammation is thought to play a role in such cases.Despite being a long-debated issue in the field of DRE,the mechanisms underlying neuroinflammation have yet to be fully elucidated.The pro-inflammatory microenvironment within the brain tissue of people with DRE has been probed using single-cell multimodal transcriptomics.Evidence suggests that inflammatory cells and pro-inflammatory cytokines in the nervous system can lead to extensive biochemical changes,such as connexin hemichannel excitability and disruption of neurotransmitter homeostasis.The presence of inflammation may give rise to neuronal network abnormalities that suppress endogenous antiepileptic systems.We focus on the role of neuroinflammation and brain network anomalies in DRE from multiple perspectives to identify critical points for clinical application.We hope to provide an insightful overview to advance the quest for better DRE treatments. 展开更多
关键词 NEUROGLIA Neuro-immune interaction Brain network CHRONICITY EPILEPSY
原文传递
Optimal Synchronization of Higher-Order Dynamical Networks 被引量:1
20
作者 Guanrong CHEN 《Artificial Intelligence Science and Engineering》 2025年第1期31-36,共6页
This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Fu... This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Furthermore,it briefly reviews the notion of higher-order network topologies and shows their promising potential in application to evaluating the optimality of network synchronizability. 展开更多
关键词 complex network SYNCHRONIZATION optimal synchronizability SIMPLEX higher-order topology
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部