期刊文献+
共找到250篇文章
< 1 2 13 >
每页显示 20 50 100
Orchestrating Network Functions in Software-Defined Networks 被引量:2
1
作者 Hongchao Hu Lin Pang +1 位作者 Zhenpeng Wang Guozhen Cheng 《China Communications》 SCIE CSCD 2017年第2期104-117,共14页
Software.defined networking(SDN) enables third.part companies to participate in the network function innovations. A number of instances for one network function will inevitably co.exist in the network. Although some o... Software.defined networking(SDN) enables third.part companies to participate in the network function innovations. A number of instances for one network function will inevitably co.exist in the network. Although some orchestration architecture has been proposed to chain network functions, rare works are focused on how to optimize this process. In this paper, we propose an optimized model for network function orchestration, function combination model(FCM). Our main contributions are as following. First, network functions are featured with a new abstraction, and are open to external providers. And FCM identifies network functions using unique type, and organizes their instances distributed over the network with the appropriate way. Second, with the specialized demands, we can combine function instances under the global network views, and formulate it into the problem of Boolean linear program(BLP). A simulated annealing algorithm is designed to approach optimal solution for this BLP. Finally, the numerical experiment demonstrates that our model can create outstanding composite schemas efficiently. 展开更多
关键词 software-defined network network function function orchestrating
在线阅读 下载PDF
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
2
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
暂未订购
rTMS Improves Cognitive Function and Brain Network Connectivity in Patients With Alzheimer’s Disease
3
作者 XU Gui-Zhi LIU Lin +4 位作者 GUO Miao-Miao WANG Tian GAO Jiao-Jiao JI Yong WANG Pan 《生物化学与生物物理进展》 北大核心 2025年第8期2131-2145,共15页
Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,n... Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,neural oscillatory dynamics,and brain network reorganization remain unclear.This investigation seeks to systematically evaluate the therapeutic potential of rTMS as a non-invasive neuromodulatory intervention through a multimodal framework integrating clinical assessments,molecular profiling,and neurophysiological monitoring.Methods In this prospective double-blind trial,12 AD patients underwent a 14-day protocol of 20 Hz rTMS,with comprehensive multimodal assessments performed pre-and postintervention.Cognitive functioning was quantified using the mini-mental state examination(MMSE)and Montreal cognitive assessment(MOCA),while daily living capacities and neuropsychiatric profiles were respectively evaluated through the activities of daily living(ADL)scale and combined neuropsychiatric inventory(NPI)-Hamilton depression rating scale(HAMD).Peripheral blood biomarkers,specifically Aβ1-40 and phosphorylated tau(p-tau181),were analyzed to investigate the effects of rTMS on molecular metabolism.Spectral power analysis was employed to investigate rTMS-induced modulations of neural rhythms in AD patients,while brain network analyses incorporating topological properties were conducted to examine stimulus-driven network reorganization.Furthermore,systematic assessment of correlations between cognitive scale scores,blood biomarkers,and network characteristics was performed to elucidate cross-modal therapeutic associations.Results Clinically,MMSE and MOCA scores improved significantly(P<0.05).Biomarker showed that Aβ1-40 level increased(P<0.05),contrasting with p-tau181 reduction.Moreover,the levels of Aβ1-40 were positively correlated with MMSE and MOCA scores.Post-intervention analyses revealed significant modulations in oscillatory power,characterized by pronounced reductions in delta(P<0.05)and theta bands(P<0.05),while concurrent enhancements were observed in alpha,beta,and gamma band activities(all P<0.05).Network analysis revealed frequency-specific reorganization:clustering coefficients were significantly decreased in delta,theta,and alpha bands(P<0.05),while global efficiency improvement was exclusively detected in the delta band(P<0.05).The alpha band demonstrated concurrent increases in average nodal degree(P<0.05)and characteristic path length reduction(P<0.05).Further research findings indicate that the changes in the clinical scale HAMD scores before and after rTMS stimulation are negatively correlated with the changes in the blood biomarkers Aβ1-40 and p-tau181.Additionally,the changes in the clinical scales MMSE and MoCA scores were negatively correlated with the changes in the node degree of the alpha frequency band and negatively correlated with the clustering coefficient of the delta frequency band.However,the changes in MMSE scores are positively correlated with the changes in global efficiency of both the delta and alpha frequency bands.Conclusion 20 Hz rTMS targeting dorsolateral prefrontal cortex(DLPFC)significantly improves cognitive function and enhances the metabolic clearance ofβ-amyloid and tau proteins in AD patients.This neurotherapeutic effect is mechanistically associated with rTMS-mediated frequency-selective neuromodulation,which enhances the connectivity of oscillatory networks through improved neuronal synchronization and optimized topological organization of functional brain networks.These findings not only support the efficacy of rTMS as an adjunctive therapy for AD but also underscore the importance of employing multiple assessment methods—including clinical scales,blood biomarkers,and EEG——in understanding and monitoring the progression of AD.This research provides a significant theoretical foundation and empirical evidence for further exploration of rTMS applications in AD treatment. 展开更多
关键词 transcranial magnetic stimulation Alzheimer’s disease power spectral density ELECTROENCEPHALOGRAM brain functional network
原文传递
Effective Edge-Cloud Interplay for NFV-Based Optical Metro-Access Networks Supporting IoT Services
4
作者 Jin Feiming Zhang Yukun +2 位作者 Li Hanxue Amr Tolba Zhang Tiantian 《China Communications》 2025年第4期117-128,共12页
In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the V... In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the Virtual Machines(VMs)cannot be successfully launched due to the server overload.In addition,transferring the data from the AP to the remote DC may cause an undesirable delivery delay.For this end,we propose a promising solution considering the interplay between the cloud DC and edge APs.More specifically,bringing the partial capability of computing in APs close to things can reduce the pressure of DCs while guaranteeing the expected Quality of Service(QoS).In this work,when the cloud DC resource becomes limited,especially for delay sensitive but not computing-dependent IoT applications,we degrade their VMs and migrate them to edge APs instead of the remote DC.To avoid excessive VM degradation and computing offloading,we derive appropriate VM degradation coefficients based on classic microeconomic theory.Simulation results demonstrate that our algorithms improve the service providers'utility with the ratio from 34%to 89%over traditional cloud-centric solutions. 展开更多
关键词 computing offloading edge-cloud interplay network function virtualization optical metroaccess network service degradability
在线阅读 下载PDF
Space Network Emulation System Based on a User-Space Network Stack
5
作者 LEI Jianzhe ZHAO Kanglian +1 位作者 HOU Dongxu ZHOU Fenlin 《ZTE Communications》 2025年第2期11-19,共9页
This paper presents a space network emulation system based on a user-space network stack named Nos to solve space networks'unique architecture and routing issues and kernel stacks'inefficiency and development ... This paper presents a space network emulation system based on a user-space network stack named Nos to solve space networks'unique architecture and routing issues and kernel stacks'inefficiency and development complexity.Our low Earth orbit satellite scenario emulation verifies the dynamic routing function of the protocol stack.The proposed system uses technologies like Open vSwitch(OVS)and traffic control(TC)to emulate the space network's highly dynamic topology and time-varying link characteristics.The emulation results demonstrate the system's high reliability,and the user-space network stack reduces development complexity and debugging difficulty,providing convenience for the development of space network protocols and network functions. 展开更多
关键词 network emulation space network user-space network stack network function virtualization
在线阅读 下载PDF
A study of connectivity features analysis in brain function network for dementia recognition
6
作者 Siying Li Peng Wang +6 位作者 Zhenfeng Li Lidong Du Xianxiang Chen Jie Sun Libin Jiang Gang Cheng Zhen Fang 《Nanotechnology and Precision Engineering》 2025年第1期79-93,共15页
Dementias such as Alzheimer disease(AD)and mild cognitive impairment(MCI)lead to problems with memory,language,and daily activities resulting from damage to neurons in the brain.Given the irreversibility of this neuro... Dementias such as Alzheimer disease(AD)and mild cognitive impairment(MCI)lead to problems with memory,language,and daily activities resulting from damage to neurons in the brain.Given the irreversibility of this neuronal damage,it is crucial to find a biomarker to distinguish individuals with these diseases from healthy people.In this study,we construct a brain function network based on electroencephalography data to study changes in AD and MCI patients.Using a graph-theoretical approach,we examine connectivity features and explore their contributions to dementia recognition at edge,node,and network levels.We find that connectivity is reduced in AD and MCI patients compared with healthy controls.We also find that the edge-level features give the best performance when machine learning models are used to recognize dementia.The results of feature selection identify the top 50 ranked edge-level features constituting an optimal subset,which is mainly connected with the frontal nodes.A threshold analysis reveals that the performance of edge-level features is more sensitive to the threshold for the connection strength than that of node-and network-level features.In addition,edge-level features with a threshold of 0 provide the most effective dementia recognition.The K-nearest neighbors(KNN)machine learning model achieves the highest accuracy of 0.978 with the optimal subset when the threshold is 0.Visualization of edge-level features suggests that there are more long connections linking the frontal region with the occipital and parietal regions in AD and MCI patients compared with healthy controls.Our codes are publicly available at https://github.com/Debbie-85/eeg-connectivity. 展开更多
关键词 ELECTROENCEPHALOGRAPHY Brain function network Machine learning Feature selection Dementia recognition
暂未订购
Radial Basis Function Neural Network Adaptive Controller for Wearable Upper-Limb Exoskeleton with Disturbance Observer
7
作者 Mohammad Soleimani Amiri Sahbi Boubaker +1 位作者 Rizauddin Ramli Souad Kamel 《Computer Modeling in Engineering & Sciences》 2025年第9期3113-3133,共21页
Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled pe... Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent.However,controlling an exoskeleton for rehabilitation presents challenges due to their nonlinear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton.To remedy these problems,this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons,addressing the challenges of nonlinear dynamics and external disturbances.The proposed controller integrated a Radial Basis Function Neural Network(RBFNN)with a disturbance observer and employed a high-dimensional integral Lyapunov function to guarantee system stability and trajectory tracking performance.In the control system,the role of the RBFNN was to estimate uncertain signals in the dynamic model,while the disturbance observer tackled external disturbances during trajectory tracking.Artificially created scenarios for Human-Robot interactive experiments and periodically repeated reference trajectory experiments validated the controller’s performance,demonstrating efficient tracking.The proposed controller is found to achieve superior tracking accuracy with Root-Mean-Squared(RMS)errors of 0.022-0.026 rad for all joints,outperforming conventional Proportional-Integral-Derivative(PID)by 73%and Neural-Fuzzy Adaptive Control(NFAC)by 389.47%lower error.These results suggested that the RBFNN adaptive controller,coupled with disturbance compensation,could serve as an effective rehabilitation tool for upper-limb exoskeletons.These results demonstrate the superiority of the proposed method in enhancing rehabilitation accuracy and robustness,offering a promising solution for the control of upper-limb assistive devices.Based on the obtained results and due to their high robustness,the proposed control schemes can be extended to other motor disabilities,including lower limb exoskeletons. 展开更多
关键词 Adaptive neural network controller disturbance observer upper-limb exoskeleton rehabilitation robotics Lyapunov stability radial basis function network
在线阅读 下载PDF
Synchronization of chaos using radial basis functions neural networks 被引量:2
8
作者 Ren Haipeng Liu Ding 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期83-88,100,共7页
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst... The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method. 展开更多
关键词 Chaos synchronization Radial basis function neural networks Model error Parameter perturbation Measurement noise.
在线阅读 下载PDF
Understanding biological functions through molecular networks 被引量:7
9
作者 Han,JD 《Cell Research》 SCIE CAS CSCD 2008年第2期224-237,共14页
The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approa... The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approaches have been employed to study the structure, function and dynamics of molecular networks, and begin to reveal important links of various network properties to the functions of the biological systems. In agreement with these functional links, evolutionary selection of a network is apparently based on the function, rather than directly on the structure of the network. Dynamic modularity is one of the prominent features of molecular networks. Taking advantage of such a feature may simplify network-based biological studies through construction of process-specific modular networks and provide functional and mechanistic insights linking genotypic variations to complex traits or diseases, which is likely to be a key approach in the next wave of understanding complex human diseases. With the development of ready-to-use network analysis and modeling tools the networks approaches will be infused into everyday biological research in the near future. 展开更多
关键词 network data integration modularity molecular function genetic variation
暂未订购
Security Monitoring and Management for the Network Services in the Orchestration of SDN-NFV Environment Using Machine Learning Techniques 被引量:2
10
作者 Nasser Alshammari Shumaila Shahzadi +7 位作者 Saad Awadh Alanazi Shahid Naseem Muhammad Anwar Madallah Alruwaili Muhammad Rizwan Abid Omar Alruwaili Ahmed Alsayat Fahad Ahmad 《Computer Systems Science & Engineering》 2024年第2期363-394,共32页
Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified ne... Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified network lifecycle,and policies management.Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration(NFV MANO),and malicious attacks in different scenarios disrupt the NFV Orchestrator(NFVO)and Virtualized Infrastructure Manager(VIM)lifecycle management related to network services or individual Virtualized Network Function(VNF).This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and handle security functions in order to enhance the quality of experience for end users.An anomaly detector investigates these identified risks and provides secure network services.It enables virtual network security functions and identifies anomalies in Kubernetes(a cloud-based platform).For training and testing purpose of the proposed approach,an intrusion-containing dataset is used that hold multiple malicious activities like a Smurf,Neptune,Teardrop,Pod,Land,IPsweep,etc.,categorized as Probing(Prob),Denial of Service(DoS),User to Root(U2R),and Remote to User(R2L)attacks.An anomaly detector is anticipated with the capabilities of a Machine Learning(ML)technique,making use of supervised learning techniques like Logistic Regression(LR),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),and Extreme Gradient Boosting(XGBoost).The proposed framework has been evaluated by deploying the identified ML algorithm on a Jupyter notebook in Kubeflow to simulate Kubernetes for validation purposes.RF classifier has shown better outcomes(99.90%accuracy)than other classifiers in detecting anomalies/intrusions in the containerized environment. 展开更多
关键词 Software defined network network function virtualization network function virtualization management and orchestration virtual infrastructure manager virtual network function Kubernetes Kubectl artificial intelligence machine learning
在线阅读 下载PDF
Virtualizing Network and Service Functions: Impact on ICT Transformation and Standardization 被引量:1
11
作者 Bhumip Khasnabish Jie Hu Ghazanfar Ali 《ZTE Communications》 2013年第4期40-46,共7页
Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The s... Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The same concept has recently resurfaced under the guise of cloud computing and virtualized computing.Although cloud computing was originally used in IT for server virtualization,the ICT industry is taking a new look at virtualization.This paradigm shift is shaking up the computing,storage,networking,and ser vice industries.The hope is that virtualizing and automating configuration and service management/orchestration will save both capes and opex for network transformation.A complimentary trend is the separation(over an open interface)of control and transmission.This is commonly referred to as software defined networking(SDN).This paper reviews trends in network/service functions,efforts to standardize these functions,and required management and orchestration. 展开更多
关键词 network function virtualization(NFV) and chaining service function virtualization(SFV) and chaining network virtualization overlay(NVO) software defined networking(SDN) networking economics
在线阅读 下载PDF
Service Function Chain Migration in LEO Satellite Networks 被引量:1
12
作者 Geng Yuhui Wang Niwei +5 位作者 Chen Xi Xu Xiaofan Zhou Changsheng Yang Junyi Xiao Zhenyu Cao Xianbin 《China Communications》 SCIE CSCD 2024年第3期247-259,共13页
With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)sat... With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity. 展开更多
关键词 network function virtualization(NFV) resource allocation satellite networks service function chain(SFC) SFC migration SFC placement soft-ware defined network(SDN)
在线阅读 下载PDF
MART(Splitting-Merging Assisted Reliable)Independent Component Analysis for Extracting Accurate Brain Functional Networks 被引量:1
13
作者 Xingyu He Vince D.Calhoun Yuhui Du 《Neuroscience Bulletin》 SCIE CAS CSCD 2024年第7期905-920,共16页
Functional networks(FNs)hold significant promise in understanding brain function.Independent component analysis(ICA)has been applied in estimating FNs from functional magnetic resonance imaging(fMRI).However,determini... Functional networks(FNs)hold significant promise in understanding brain function.Independent component analysis(ICA)has been applied in estimating FNs from functional magnetic resonance imaging(fMRI).However,determining an optimal model order for ICA remains challenging,leading to criticism about the reliability of FN estimation.Here,we propose a SMART(splitting-merging assisted reliable)ICA method that automatically extracts reliable FNs by clustering independent components(ICs)obtained from multi-model-order ICA using a simplified graph while providing linkages among FNs deduced from different-model orders.We extend SMART ICA to multi-subject fMRI analysis,validating its effectiveness using simulated and real fMRI data.Based on simulated data,the method accurately estimates both group-common and group-unique components and demonstrates robustness to parameters.Using two age-matched cohorts of resting fMRI data comprising 1,950 healthy subjects,the resulting reliable group-level FNs are greatly similar between the two cohorts,and interestingly the subject-specific FNs show progressive changes while age increases.Furthermore,both small-scale and large-scale brain FN templates are provided as benchmarks for future studies.Taken together,SMART ICA can automatically obtain reliable FNs in analyzing multi-subject fMRI data,while also providing linkages between different FNs. 展开更多
关键词 Independent component analysis Functional magnetic resonance imaging-Brain functional networks Clustering Multi-model-order
原文传递
Epileptic brain network mechanisms and neuroimaging techniques for the brain network 被引量:1
14
作者 Yi Guo Zhonghua Lin +1 位作者 Zhen Fan Xin Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2637-2648,共12页
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d... Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions. 展开更多
关键词 electrophysiological techniques EPILEPSY functional brain network functional magnetic resonance imaging functional near-infrared spectroscopy machine leaning molecular imaging neuroimaging techniques structural brain network virtual epileptic models
暂未订购
Advancing 5G Network Applications Lifecycle Security:An ML-Driven Approach
15
作者 Ana Hermosilla Jorge Gallego-Madrid +3 位作者 Pedro Martinez-Julia Jordi Ortiz Ved P.Kafle Antonio Skarmeta 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1447-1471,共25页
As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof pa... As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof paramount importance.This paper introduces a novel integrated model architecture,combining a networkapplication validation framework with an AI-driven reactive system to enhance security in real-time.The proposedmodel leverages machine learning(ML)and artificial intelligence(AI)to dynamically monitor and respond tosecurity threats,effectively mitigating potential risks before they impact the network infrastructure.This dualapproach not only validates the functionality and performance of network applications before their real deploymentbut also enhances the network’s ability to adapt and respond to threats as they arise.The implementation ofthis model,in the shape of an architecture deployed in two distinct sites,demonstrates its practical viability andeffectiveness.Integrating application validation with proactive threat detection and response,the proposed modeladdresses critical security challenges unique to 5G infrastructures.This paper details the model,architecture’sdesign,implementation,and evaluation of this solution,illustrating its potential to improve network securitymanagement in 5G environments significantly.Our findings highlight the architecture’s capability to ensure boththe operational integrity of network applications and the security of the underlying infrastructure,presenting asignificant advancement in network security. 展开更多
关键词 network application network function virtualization machine learning SECURITY 5G
在线阅读 下载PDF
Assessing target optical camouflage effects using brain functional networks:A feasibility study
16
作者 Zhou Yu Li Xue +4 位作者 Weidong Xu Jun Liu Qi Jia Jianghua Hu Jidong Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期69-77,共9页
Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby c... Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby contributing to the advancement of camouflage evaluation.In this study,images with various camouflage effects were presented to observers to generate electroencephalography(EEG)signals,which were then used to construct a brain functional network.The topological parameters of the network were subsequently extracted and input into a machine learning model for training.The results indicate that most of the classifiers achieved accuracy rates exceeding 70%.Specifically,the Logistic algorithm achieved an accuracy of 81.67%.Therefore,it is possible to predict target camouflage effectiveness with high accuracy without the need to calculate discovery probability.The proposed method fully considers the aspects of human visual and cognitive processes,overcomes the subjectivity of human interpretation,and achieves stable and reliable accuracy. 展开更多
关键词 Camouflage effect evaluation Electroencephalography(EEG) Brain functional networks Machine learning
在线阅读 下载PDF
Efficiency-optimized 6G:A virtual network resource orchestration strategy by enhanced particle swarm optimization
17
作者 Sai Zou Junrui Wu +4 位作者 Haisheng Yu Wenyong Wang Lisheng Huang Wei Ni Yan Liu 《Digital Communications and Networks》 CSCD 2024年第5期1221-1233,共13页
The future Sixth-Generation (6G) wireless systems are expected to encounter emerging services with diverserequirements. In this paper, 6G network resource orchestration is optimized to support customized networkslicin... The future Sixth-Generation (6G) wireless systems are expected to encounter emerging services with diverserequirements. In this paper, 6G network resource orchestration is optimized to support customized networkslicing of services, and place network functions generated by heterogeneous devices into available resources.This is a combinatorial optimization problem that is solved by developing a Particle Swarm Optimization (PSO)based scheduling strategy with enhanced inertia weight, particle variation, and nonlinear learning factor, therebybalancing the local and global solutions and improving the convergence speed to globally near-optimal solutions.Simulations show that the method improves the convergence speed and the utilization of network resourcescompared with other variants of PSO. 展开更多
关键词 VIRTUALIZATION network function orchestration network resource virtualized orchestration (NRVO) Particle swarm optimization(PSO)
在线阅读 下载PDF
A neural network solution of first-passage problems
18
作者 Jiamin QIAN Lincong CHEN J.Q.SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第11期2023-2036,共14页
This paper proposes a novel method for solving the first-passage time probability problem of nonlinear stochastic dynamic systems.The safe domain boundary is exactly imposed into the radial basis function neural netwo... This paper proposes a novel method for solving the first-passage time probability problem of nonlinear stochastic dynamic systems.The safe domain boundary is exactly imposed into the radial basis function neural network(RBF-NN)architecture such that the solution is an admissible function of the boundary-value problem.In this way,the neural network solution can automatically satisfy the safe domain boundaries and no longer requires adding the corresponding loss terms,thus efficiently handling structure failure problems defined by various safe domain boundaries.The effectiveness of the proposed method is demonstrated through three nonlinear stochastic examples defined by different safe domains,and the results are validated against the extensive Monte Carlo simulations(MCSs). 展开更多
关键词 first-passage time probability nonlinear stochastic dynamic system radial basis function neural network(RBF-NN) safe domain boundary Monte Carlo simulation(MCS)
在线阅读 下载PDF
Brain Functional Network Changes in Patients with Poststroke Cognitive Impairment Following Acupuncture Therapy
19
作者 Ran Wang Nian Liu +4 位作者 Hao Xu Peng Zhang Xiaohua Huang Lin Yang Xiaoming Zhang 《Health》 2024年第9期856-871,共16页
Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture t... Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture therapy. Methods: Twenty-two PSCI patients who underwent acupuncture therapy in our hospital were enrolled as research subjects. Another 14 people matched for age, sex, and education level were included in the normal control (HC) group. All the subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans;the PSCI patients underwent one scan before acupuncture therapy and another after. The network metric difference between PSCI patients and HCs was analyzed via the independent-sample t test, whereas the paired-sample t test was employed to analyze the network metric changes in PSCI patients before vs. after treatment. Results: Small-world network attributes were observed in both groups for sparsities between 0.1 and 0.28. Compared with the HC group, the PSCI group presented significantly lower values for the global topological properties (γ, Cp, and Eloc) of the brain;significantly greater values for the nodal attributes of betweenness centrality in the CUN. L and the HES. R, degree centrality in the SFGdor. L, PCG. L, IPL. L, and HES. R, and nodal local efficiency in the ORBsup. R, ORBsupmed. R, DCG. L, SMG. R, and TPOsup. L;and decreased degree centrality in the MFG. R, IFGoperc. R, and SOG. R. After treatment, PSCI patients presented increased degree centrality in the LING.L, LING.R, and IOG. L and nodal local efficiency in PHG. L, IOG. R, FFG. L, and the HES. L, and decreased betweenness centrality in the PCG. L and CUN. L, degree centrality in the ORBsupmed. R, and nodal local efficiency in ANG. R. Conclusion: Cognitive decline in PSCI patients may be related to BFN disorders;acupuncture therapy may modulate the topological properties of the BFNs of PSCI patients. 展开更多
关键词 Cognitive Decline Poststroke Cognitive Impairment Functional Magnetic Resonance Imaging Brain Functional network Graph Theoretical Analysis
暂未订购
Functional Neural Networks in Human Brain Organoids
20
作者 Longjun Gu Hongwei Cai +3 位作者 Lei Chen Mingxia Gu Jason Tchieu Feng Guo 《Biomedical Engineering Frontiers》 2024年第1期89-98,共10页
Human brain organoids are 3-dimensional brain-like tissues derived from human pluripotent stem cells and hold promising potential for modeling neurological,psychiatric,and developmental disorders.While the molecular a... Human brain organoids are 3-dimensional brain-like tissues derived from human pluripotent stem cells and hold promising potential for modeling neurological,psychiatric,and developmental disorders.While the molecular and cellular aspects of human brain organoids have been intensively studied,their functional properties such as organoid neural networks(ONNs)are largely understudied.Here,we summarize recent research advances in understanding,characterization,and application of functional ONNs in human brain organoids.We first discuss the formation of ONNs and follow up with characterization strategies including microelectrode array(MEA)technology and calcium imaging.Moreover,we highlight recent studies utilizing ONNs to investigate neurological diseases such as Rett syndrome and Alzheimer’s disease.Finally,we provide our perspectives on the future challenges and opportunities for using ONNs in basic research and translational applications. 展开更多
关键词 functional neural networks calcium imaging human brain orga human brain organoids neurological diseases human pluripotent stem cells organoid neural networks onns microelectrode array technology
原文传递
上一页 1 2 13 下一页 到第
使用帮助 返回顶部