As a key technology to realize smart services of Internet of Things(Io T),network virtualization technology can support the network diversification and ubiquity,and improve the utilization rate of network resources.Th...As a key technology to realize smart services of Internet of Things(Io T),network virtualization technology can support the network diversification and ubiquity,and improve the utilization rate of network resources.This paper studies the service-oriented network virtualization architecture for Io T services.Firstly the semantic description method for Io T services is proposed,then the resource representation model and resource management model in the environment of network virtualization are presented.Based on the above models,the service-oriented virtual network architecture for Io T is established.Finally,a smart campus system is designed and deployed based on the service-oriented virtual network architecture.Moreover,the proposed architecture and models are verified in experiments.展开更多
The evolution of airborne tactical networks(ATNs)is impeded by the network ossification problem.As a solution,network virtualization(NV)can provide a flexible and scalable architecture where virtual network embedding(...The evolution of airborne tactical networks(ATNs)is impeded by the network ossification problem.As a solution,network virtualization(NV)can provide a flexible and scalable architecture where virtual network embedding(VNE)is a key part.However,existing VNE algorithms cannot be optimally adopted in the virtualization of ATN due to the complex interference in aircombat field.In this context,a highly reliable VNE algorithm based on the transmission rate for ATN virtualization(TR-ATVNE)is proposed to adapt well to the specific electromagnetic environment of ATN.Our algorithm coordinates node and link mapping.In the node mapping,transmission-rate resource is firstly defined to effectively evaluate the ranking value of substrate nodes under the interference of both environmental noises and enemy attacks.Meanwhile,a feasible splitting rule is proposed for path splitting in the link mapping,considering the interference between wireless links.Simulation results reveal that our algorithm is able to improve the acceptance ratio of virtual network requests while maintaining a high revenue-to-cost ratio under the complex electromagnetic interference.展开更多
In order to reduce cost and complexity,fiber-wireless(FiWi) networks emerge,combining the huge amount of available bandwidth of fiber networks and the flexibility,mobility of wireless networks.However,there is still a...In order to reduce cost and complexity,fiber-wireless(FiWi) networks emerge,combining the huge amount of available bandwidth of fiber networks and the flexibility,mobility of wireless networks.However,there is still a long way to go before taking fiber and wireless systems as fully integrated networks.In this paper,we propose a network visualization based seamless networking scheme for FiWi networks,including hierarchical model,service model,service implementation and dynamic bandwidth assignment(DBA).Then,we evaluate the performance changes after network virtualization is introduced.Throughput for nodes,bandwidth for links and overheads leaded by network virtualization are analyzed.The performance of our proposed networking scheme is evaluated by simulation and real implementations,respectively.The results show that,compared to traditional networking scheme,our scheme has a better performance.展开更多
Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilizat...Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilization efficiency. To meet the diverse needs of tasks, it usually needs to instantiate multiple network functions in the form of containers interconnect various generated containers to build a Container Cluster(CC). Then CCs will be deployed on edge service nodes with relatively limited resources. However, the increasingly complex and timevarying nature of tasks brings great challenges to optimal placement of CC. This paper regards the charges for various resources occupied by providing services as revenue, the service efficiency and energy consumption as cost, thus formulates a Mixed Integer Programming(MIP) model to describe the optimal placement of CC on edge service nodes. Furthermore, an Actor-Critic based Deep Reinforcement Learning(DRL) incorporating Graph Convolutional Networks(GCN) framework named as RL-GCN is proposed to solve the optimization problem. The framework obtains an optimal placement strategy through self-learning according to the requirements and objectives of the placement of CC. Particularly, through the introduction of GCN, the features of the association relationship between multiple containers in CCs can be effectively extracted to improve the quality of placement.The experiment results show that under different scales of service nodes and task requests, the proposed method can obtain the improved system performance in terms of placement error ratio, time efficiency of solution output and cumulative system revenue compared with other representative baseline methods.展开更多
In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the V...In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the Virtual Machines(VMs)cannot be successfully launched due to the server overload.In addition,transferring the data from the AP to the remote DC may cause an undesirable delivery delay.For this end,we propose a promising solution considering the interplay between the cloud DC and edge APs.More specifically,bringing the partial capability of computing in APs close to things can reduce the pressure of DCs while guaranteeing the expected Quality of Service(QoS).In this work,when the cloud DC resource becomes limited,especially for delay sensitive but not computing-dependent IoT applications,we degrade their VMs and migrate them to edge APs instead of the remote DC.To avoid excessive VM degradation and computing offloading,we derive appropriate VM degradation coefficients based on classic microeconomic theory.Simulation results demonstrate that our algorithms improve the service providers'utility with the ratio from 34%to 89%over traditional cloud-centric solutions.展开更多
This paper presents a space network emulation system based on a user-space network stack named Nos to solve space networks'unique architecture and routing issues and kernel stacks'inefficiency and development ...This paper presents a space network emulation system based on a user-space network stack named Nos to solve space networks'unique architecture and routing issues and kernel stacks'inefficiency and development complexity.Our low Earth orbit satellite scenario emulation verifies the dynamic routing function of the protocol stack.The proposed system uses technologies like Open vSwitch(OVS)and traffic control(TC)to emulate the space network's highly dynamic topology and time-varying link characteristics.The emulation results demonstrate the system's high reliability,and the user-space network stack reduces development complexity and debugging difficulty,providing convenience for the development of space network protocols and network functions.展开更多
The increasing requirements of intensive interoperaterbility among the distributed nodes desiderate the high performance network connections, owing to the substantial growth of cloud computing and datacenters. Network...The increasing requirements of intensive interoperaterbility among the distributed nodes desiderate the high performance network connections, owing to the substantial growth of cloud computing and datacenters. Network I/O virtualization aggregates the network resource and separates it into manageable parts for particular servers or devices, which provides effective consolidation and elastic management with high agility, flexibility and scalability as well as reduced cost and cabling. However, both network I/O virtualization aggregation and the increasing network speed incur higher traffic density, which generates a heavy system stress for I/O data moving and I/O event processing. Consequently, many researchers have dedicated to enhancing the system performance and alleviating the system overhead for high performance networking virtualizatiou. This paper first elaborates the mainstreaming I/O virtualization methodologies, including device emulation, split-driver model and hardware assisted model. Then, the paper discusses and compares their specific advantages in addition to performance bottlenecks in practical utilities. This paper mainly focuses on the comprehensive survey of state- of-the-art approaches for performance optimizations and improvements as well as the portability management for network I/O virtualization. The approaches include various novel data delivery schemes, overhead mitigations for interrupt processing and adequate resource allocations for dynamic network states. Finally, we highlight the diversity of I/O virtualization besides the performance improvements in network virtualization infrastructure.展开更多
Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified ne...Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified network lifecycle,and policies management.Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration(NFV MANO),and malicious attacks in different scenarios disrupt the NFV Orchestrator(NFVO)and Virtualized Infrastructure Manager(VIM)lifecycle management related to network services or individual Virtualized Network Function(VNF).This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and handle security functions in order to enhance the quality of experience for end users.An anomaly detector investigates these identified risks and provides secure network services.It enables virtual network security functions and identifies anomalies in Kubernetes(a cloud-based platform).For training and testing purpose of the proposed approach,an intrusion-containing dataset is used that hold multiple malicious activities like a Smurf,Neptune,Teardrop,Pod,Land,IPsweep,etc.,categorized as Probing(Prob),Denial of Service(DoS),User to Root(U2R),and Remote to User(R2L)attacks.An anomaly detector is anticipated with the capabilities of a Machine Learning(ML)technique,making use of supervised learning techniques like Logistic Regression(LR),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),and Extreme Gradient Boosting(XGBoost).The proposed framework has been evaluated by deploying the identified ML algorithm on a Jupyter notebook in Kubeflow to simulate Kubernetes for validation purposes.RF classifier has shown better outcomes(99.90%accuracy)than other classifiers in detecting anomalies/intrusions in the containerized environment.展开更多
With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)sat...With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.展开更多
In this,communication world, the Network Function Virtualization concept is utilized for many businesses, small services to virtualize the network nodefunction and to build a block that may connect the chain, communic...In this,communication world, the Network Function Virtualization concept is utilized for many businesses, small services to virtualize the network nodefunction and to build a block that may connect the chain, communication services.Mainly, Virtualized Network Function Forwarding Graph (VNF-FG) has beenused to define the connection between the VNF and to give the best end-to-endservices. In the existing method, VNF mapping and backup VNF were proposedbut there was no profit and reliability improvement of the backup and mapping ofthe primary VNF. As a consequence, this paper offers a Hybrid Hexagon-CostEfficient algorithm for determining the best VNF among multiple VNF and backing up the best VNF, lowering backup costs while increasing dependability. TheVNF is chosen based on the highest cost-aware important measure (CIM) rate,which is used to assess the relevance of the VNF forwarding graph.To achieveoptimal cost-efficiency, VNF with the maximum CIM is selected. After the selection process, updating is processed by three steps which include one backup VNFfrom one SFC, two backup VNF from one Service Function Chain (SFC),and twobackup VNF from different SFC. Finally, this proposed method is compared withCERA, MinCost, MaxRbyInr based on backup cost, number of used PN nodes,SFC request utility, and latency. The simulation result shows that the proposedmethod cuts down the backup cost and computation time by 57% and 45% compared with the CER scheme and improves the cost-efficiency. As a result, this proposed system achieves less backup cost, high reliability, and low timeconsumption which can improve the Virtualized Network Function operation.展开更多
Network innovation and business transformation are both necessary for telecom operators to adapt to new situations, but operators face challenges in terms of network bearer complexity, business centralization, and IT/...Network innovation and business transformation are both necessary for telecom operators to adapt to new situations, but operators face challenges in terms of network bearer complexity, business centralization, and IT/CT integration. Network function virtualization (NFV) may inspire new development ideas, but many doubts still exist within industry, especially about how to introduce NFV into an operator' s network. This article describes the latest progress in NFV standardization, NFV requirements and hot technology issues, and typical NFV applications in an operator networks.展开更多
As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof pa...As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof paramount importance.This paper introduces a novel integrated model architecture,combining a networkapplication validation framework with an AI-driven reactive system to enhance security in real-time.The proposedmodel leverages machine learning(ML)and artificial intelligence(AI)to dynamically monitor and respond tosecurity threats,effectively mitigating potential risks before they impact the network infrastructure.This dualapproach not only validates the functionality and performance of network applications before their real deploymentbut also enhances the network’s ability to adapt and respond to threats as they arise.The implementation ofthis model,in the shape of an architecture deployed in two distinct sites,demonstrates its practical viability andeffectiveness.Integrating application validation with proactive threat detection and response,the proposed modeladdresses critical security challenges unique to 5G infrastructures.This paper details the model,architecture’sdesign,implementation,and evaluation of this solution,illustrating its potential to improve network securitymanagement in 5G environments significantly.Our findings highlight the architecture’s capability to ensure boththe operational integrity of network applications and the security of the underlying infrastructure,presenting asignificant advancement in network security.展开更多
The future Sixth-Generation (6G) wireless systems are expected to encounter emerging services with diverserequirements. In this paper, 6G network resource orchestration is optimized to support customized networkslicin...The future Sixth-Generation (6G) wireless systems are expected to encounter emerging services with diverserequirements. In this paper, 6G network resource orchestration is optimized to support customized networkslicing of services, and place network functions generated by heterogeneous devices into available resources.This is a combinatorial optimization problem that is solved by developing a Particle Swarm Optimization (PSO)based scheduling strategy with enhanced inertia weight, particle variation, and nonlinear learning factor, therebybalancing the local and global solutions and improving the convergence speed to globally near-optimal solutions.Simulations show that the method improves the convergence speed and the utilization of network resourcescompared with other variants of PSO.展开更多
As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model...As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model that makes full use of the gate recurrent unit(GRU)algorithm.Based on the fragmentation prediction model,one virtual optical network mapping scheme is presented for edge computing driven EON.With the minimum of fragmentation degree all over the whole EON,the virtual network mapping can be successively conducted.Test results show that the proposed approach can reduce blocking rate,and the supporting ability for virtual optical network services is greatly improved.展开更多
Innovations in new applications and technological advancements are driving the evolution of network architectures towards flexibility and automation.Network Function Virtualization(NFV)deploys Network Functions(NFs)as...Innovations in new applications and technological advancements are driving the evolution of network architectures towards flexibility and automation.Network Function Virtualization(NFV)deploys Network Functions(NFs)as software applications onto cloud infrastructures,redefining the development,deployment,and operation models of communication networks,thereby meeting the evolution demands of networks.However,after more than a decade of development,the progress of network service operators in NFV has not met expectations,partly because some key technologies remain unresolved.To accelerate the large-scale commercial use of NFV,this paper focuses on reviewing relevant literature from the past five years.Based on practical applications and insights into future trends,we explore the three directions of network virtualization,network cloudification,and network service orientation.We investigate the most representative technologies and the latest research progress in these fields,analyze the current problems and challenges,and provide corresponding suggestions on how to deal with them.Finally,we forecast future directions of technological development.展开更多
Network virtualization(NV) is considered as an enabling tool to remove the gradual ossification of current Internet. In the network virtualization environment, a set of heterogeneous virtual networks(VNs), isolated fr...Network virtualization(NV) is considered as an enabling tool to remove the gradual ossification of current Internet. In the network virtualization environment, a set of heterogeneous virtual networks(VNs), isolated from each other, share the underlying resources of one or multiple substrate networks(SNs) according to the resource allocation strategy. This kind of resource allocation strategy is commonly known as so called Virtual Network Embedding(VNE) algorithm in network virtualization. Owing to the common sense that VNE problem is NP-hard in nature, most of VNE algorithms proposed in the literature are heuristic. This paper surveys and analyzes a number of representative heuristic solutions in the literature. Apart from the analysis of representative heuristic solutions, a taxonomy of the heuristic solutions is also presented in the form of table. Future research directions of VNE, especially for the heuristics, are emphasized and highlighted at the end of this survey.展开更多
Software-Defined Network (SDN) empowers the evolution of Internet with the OpenFlow, Network Virtualization and Service Slicing strategies. With the fast increasing requirements of Mobile Internet services, the Inte...Software-Defined Network (SDN) empowers the evolution of Internet with the OpenFlow, Network Virtualization and Service Slicing strategies. With the fast increasing requirements of Mobile Internet services, the Internet and Mobile Networks go to the convergence. Mobile Networks can also get benefits from the SDN evolution to fulfill the 5th Generation (5G) capacity booming. The article implements SDN into Frameless Network Architecture (FNA) for 5G Mobile Network evolution with proposed Mobile-oriented OpenFlow Protocol (MOFP). The Control Plane/User Plane (CP/UP) separation and adaptation strategy is proposed to support the User-Centric scenario in FNA. The traditional Base Station is separated with Central Processing Entity (CPE) and Antenna Element (AE) to perform the OpenFlow and Network Virtualization. The AEs are released as new resources for serving users. The mobile-oriented Service Slicing with different Quality of Service (QoS) classification is proposed and Resource Pooling based Virtualized Radio Resource Management (VRRM) is optimized for the Service Slicing strategy with resource-limited feature in Mobile Networks. The capacity gains are provided to show the merits of SDN based FNA. And the MiniNet based Trial Network with Service Slicing is implemented with experimental results.展开更多
The virtual network embedding/mapping problem is an important issue in network virtualization in Software-Defined Networking(SDN).It is mainly concerned with mapping virtual network requests,which could be a set of SD...The virtual network embedding/mapping problem is an important issue in network virtualization in Software-Defined Networking(SDN).It is mainly concerned with mapping virtual network requests,which could be a set of SDN flows,onto a shared substrate network automatically and efficiently.Previous researches mainly focus on developing heuristic algorithms for general topology virtual network.In practice however,the virtual network is usually generated with specific topology for specific purpose.Thus,it is a challenge to optimize the heuristic algorithms with these topology information.In order to deal with this problem,we propose a topology-cognitive algorithm framework,which is composed of a guiding principle for topology algorithm developing and a compound algorithm.The compound algorithm is composed of several subalgorithms,which are optimized for specific topologies.We develop star,tree,and ring topology algorithms as examples,other subalgorithms can be easily achieved following the same framework.The simulation results show that the topology-cognitive algorithm framework is effective in developing new topology algorithms,and the developed compound algorithm greatly enhances the performance of the Revenue/Cost(R/C) ratio and the Runtime than traditional heuristic algorithms for multi-topology virtual network embedding problem.展开更多
Network virtualization(NV)is a highprofile way to solve the ossification problem of the nowadays Internet,and be able to support the diversified network naturally.In NV,Virtual Network Embedding(VNE)problem has been w...Network virtualization(NV)is a highprofile way to solve the ossification problem of the nowadays Internet,and be able to support the diversified network naturally.In NV,Virtual Network Embedding(VNE)problem has been widely considered as a crucial issue,which is aimed to embed Virtual Networks(VNs)onto the shared substrate networks(SNs)efficiently.Recently,some VNE approaches have developed Node Ranking strategies to drive and enhance the embedding efficiency.Node Ranking Strategy rank/sort the nodes according to the attributes of the node,including both residual local attributes(CPU,Bandwidth,storage,Etc.)and the global topology attributes(Number of neighborhood Nodes,Delay to other nodes,Etc.).This paper presents an overview of Node Ranking Strategies in Virtual Network Embedding,and possible directions of VNE Node Ranking Strategy.展开更多
Network virtualization(NV) is pushed forward by its proponents as a crucial attribute of next generation network, aiming at overcoming the gradual ossification of current networks, particularly to the worldwide Intern...Network virtualization(NV) is pushed forward by its proponents as a crucial attribute of next generation network, aiming at overcoming the gradual ossification of current networks, particularly to the worldwide Internet. Through virtualization, multiple customized virtual networks(VNs), requested by users, are allowed to coexist on the underlying substrate networks(SNs). In addition, the virtualization scheme contributes to sharing underlying physical resources simultaneously and seamlessly. However, multiple technical issues still stand in the way of NV successful implementation. One key technical issue is virtual network embedding(VNE), known as the resource allocation problem for NV. This paper conducts a survey of embedding algorithms for VNE problem. At first, the NV business model for VNE problem is presented. Then, the latest VNE problem description is presented. Main performance metrics for evaluating embedding algorithms are also involved. Afterwards, existing VNE algorithms are detailed, according to the novel proposed category approach. Next, key future research aspects of embedding algorithms are listed out. Finally, the paper is briefly concluded.展开更多
基金supported by the national 973 project of China under Grants 2013CB329104the Natural Science Foundation of China under Grants 61372124,61427801,61271237,61271236Jiangsu Collaborative Innovation Center for Technology and Application of Internet of Things under Grants SJ213003
文摘As a key technology to realize smart services of Internet of Things(Io T),network virtualization technology can support the network diversification and ubiquity,and improve the utilization rate of network resources.This paper studies the service-oriented network virtualization architecture for Io T services.Firstly the semantic description method for Io T services is proposed,then the resource representation model and resource management model in the environment of network virtualization are presented.Based on the above models,the service-oriented virtual network architecture for Io T is established.Finally,a smart campus system is designed and deployed based on the service-oriented virtual network architecture.Moreover,the proposed architecture and models are verified in experiments.
基金supported by the National Natural Science Foundation of China(61701521)the Shaanxi Provincial Natural Science Foundation(2018JQ6074)。
文摘The evolution of airborne tactical networks(ATNs)is impeded by the network ossification problem.As a solution,network virtualization(NV)can provide a flexible and scalable architecture where virtual network embedding(VNE)is a key part.However,existing VNE algorithms cannot be optimally adopted in the virtualization of ATN due to the complex interference in aircombat field.In this context,a highly reliable VNE algorithm based on the transmission rate for ATN virtualization(TR-ATVNE)is proposed to adapt well to the specific electromagnetic environment of ATN.Our algorithm coordinates node and link mapping.In the node mapping,transmission-rate resource is firstly defined to effectively evaluate the ranking value of substrate nodes under the interference of both environmental noises and enemy attacks.Meanwhile,a feasible splitting rule is proposed for path splitting in the link mapping,considering the interference between wireless links.Simulation results reveal that our algorithm is able to improve the acceptance ratio of virtual network requests while maintaining a high revenue-to-cost ratio under the complex electromagnetic interference.
基金supported by National Natural Science Foundation of China under Grant No.61240040
文摘In order to reduce cost and complexity,fiber-wireless(FiWi) networks emerge,combining the huge amount of available bandwidth of fiber networks and the flexibility,mobility of wireless networks.However,there is still a long way to go before taking fiber and wireless systems as fully integrated networks.In this paper,we propose a network visualization based seamless networking scheme for FiWi networks,including hierarchical model,service model,service implementation and dynamic bandwidth assignment(DBA).Then,we evaluate the performance changes after network virtualization is introduced.Throughput for nodes,bandwidth for links and overheads leaded by network virtualization are analyzed.The performance of our proposed networking scheme is evaluated by simulation and real implementations,respectively.The results show that,compared to traditional networking scheme,our scheme has a better performance.
文摘Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilization efficiency. To meet the diverse needs of tasks, it usually needs to instantiate multiple network functions in the form of containers interconnect various generated containers to build a Container Cluster(CC). Then CCs will be deployed on edge service nodes with relatively limited resources. However, the increasingly complex and timevarying nature of tasks brings great challenges to optimal placement of CC. This paper regards the charges for various resources occupied by providing services as revenue, the service efficiency and energy consumption as cost, thus formulates a Mixed Integer Programming(MIP) model to describe the optimal placement of CC on edge service nodes. Furthermore, an Actor-Critic based Deep Reinforcement Learning(DRL) incorporating Graph Convolutional Networks(GCN) framework named as RL-GCN is proposed to solve the optimization problem. The framework obtains an optimal placement strategy through self-learning according to the requirements and objectives of the placement of CC. Particularly, through the introduction of GCN, the features of the association relationship between multiple containers in CCs can be effectively extracted to improve the quality of placement.The experiment results show that under different scales of service nodes and task requests, the proposed method can obtain the improved system performance in terms of placement error ratio, time efficiency of solution output and cumulative system revenue compared with other representative baseline methods.
基金supported by the Researchers Supporting Project of King Saud University,Riyadh,Saudi Arabia,under Project RSPD2025R681。
文摘In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the Virtual Machines(VMs)cannot be successfully launched due to the server overload.In addition,transferring the data from the AP to the remote DC may cause an undesirable delivery delay.For this end,we propose a promising solution considering the interplay between the cloud DC and edge APs.More specifically,bringing the partial capability of computing in APs close to things can reduce the pressure of DCs while guaranteeing the expected Quality of Service(QoS).In this work,when the cloud DC resource becomes limited,especially for delay sensitive but not computing-dependent IoT applications,we degrade their VMs and migrate them to edge APs instead of the remote DC.To avoid excessive VM degradation and computing offloading,we derive appropriate VM degradation coefficients based on classic microeconomic theory.Simulation results demonstrate that our algorithms improve the service providers'utility with the ratio from 34%to 89%over traditional cloud-centric solutions.
基金supported by the National Natural Science Foundation of China under Grant No.62131012ZTE Industry-University-Institute Cooperation Funds under Grant No.IA20230712005。
文摘This paper presents a space network emulation system based on a user-space network stack named Nos to solve space networks'unique architecture and routing issues and kernel stacks'inefficiency and development complexity.Our low Earth orbit satellite scenario emulation verifies the dynamic routing function of the protocol stack.The proposed system uses technologies like Open vSwitch(OVS)and traffic control(TC)to emulate the space network's highly dynamic topology and time-varying link characteristics.The emulation results demonstrate the system's high reliability,and the user-space network stack reduces development complexity and debugging difficulty,providing convenience for the development of space network protocols and network functions.
基金This work was supported by the National High Technology Research and Development 863 Program of China under Grant No. 2012AA010905, the National Natural Science Foundation of China under Grant Nos. 61272100 and 61202374, the Ministry of Education Major Project of China under Grant No. 313035, and the National Research Foundation (NRF) Singapore under its CREATE Program.
文摘The increasing requirements of intensive interoperaterbility among the distributed nodes desiderate the high performance network connections, owing to the substantial growth of cloud computing and datacenters. Network I/O virtualization aggregates the network resource and separates it into manageable parts for particular servers or devices, which provides effective consolidation and elastic management with high agility, flexibility and scalability as well as reduced cost and cabling. However, both network I/O virtualization aggregation and the increasing network speed incur higher traffic density, which generates a heavy system stress for I/O data moving and I/O event processing. Consequently, many researchers have dedicated to enhancing the system performance and alleviating the system overhead for high performance networking virtualizatiou. This paper first elaborates the mainstreaming I/O virtualization methodologies, including device emulation, split-driver model and hardware assisted model. Then, the paper discusses and compares their specific advantages in addition to performance bottlenecks in practical utilities. This paper mainly focuses on the comprehensive survey of state- of-the-art approaches for performance optimizations and improvements as well as the portability management for network I/O virtualization. The approaches include various novel data delivery schemes, overhead mitigations for interrupt processing and adequate resource allocations for dynamic network states. Finally, we highlight the diversity of I/O virtualization besides the performance improvements in network virtualization infrastructure.
基金This work was funded by the Deanship of Scientific Research at Jouf University under Grant Number(DSR2022-RG-0102).
文摘Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified network lifecycle,and policies management.Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration(NFV MANO),and malicious attacks in different scenarios disrupt the NFV Orchestrator(NFVO)and Virtualized Infrastructure Manager(VIM)lifecycle management related to network services or individual Virtualized Network Function(VNF).This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and handle security functions in order to enhance the quality of experience for end users.An anomaly detector investigates these identified risks and provides secure network services.It enables virtual network security functions and identifies anomalies in Kubernetes(a cloud-based platform).For training and testing purpose of the proposed approach,an intrusion-containing dataset is used that hold multiple malicious activities like a Smurf,Neptune,Teardrop,Pod,Land,IPsweep,etc.,categorized as Probing(Prob),Denial of Service(DoS),User to Root(U2R),and Remote to User(R2L)attacks.An anomaly detector is anticipated with the capabilities of a Machine Learning(ML)technique,making use of supervised learning techniques like Logistic Regression(LR),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),and Extreme Gradient Boosting(XGBoost).The proposed framework has been evaluated by deploying the identified ML algorithm on a Jupyter notebook in Kubeflow to simulate Kubernetes for validation purposes.RF classifier has shown better outcomes(99.90%accuracy)than other classifiers in detecting anomalies/intrusions in the containerized environment.
基金supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers U22A2007 and 62171010the Open project of Satellite Internet Key Laboratory in 2022(Project 3:Research on Spaceborne Lightweight Core Network and Intelligent Collaboration)the Beijing Natural Science Foundation under grant number L212003.
文摘With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.
文摘In this,communication world, the Network Function Virtualization concept is utilized for many businesses, small services to virtualize the network nodefunction and to build a block that may connect the chain, communication services.Mainly, Virtualized Network Function Forwarding Graph (VNF-FG) has beenused to define the connection between the VNF and to give the best end-to-endservices. In the existing method, VNF mapping and backup VNF were proposedbut there was no profit and reliability improvement of the backup and mapping ofthe primary VNF. As a consequence, this paper offers a Hybrid Hexagon-CostEfficient algorithm for determining the best VNF among multiple VNF and backing up the best VNF, lowering backup costs while increasing dependability. TheVNF is chosen based on the highest cost-aware important measure (CIM) rate,which is used to assess the relevance of the VNF forwarding graph.To achieveoptimal cost-efficiency, VNF with the maximum CIM is selected. After the selection process, updating is processed by three steps which include one backup VNFfrom one SFC, two backup VNF from one Service Function Chain (SFC),and twobackup VNF from different SFC. Finally, this proposed method is compared withCERA, MinCost, MaxRbyInr based on backup cost, number of used PN nodes,SFC request utility, and latency. The simulation result shows that the proposedmethod cuts down the backup cost and computation time by 57% and 45% compared with the CER scheme and improves the cost-efficiency. As a result, this proposed system achieves less backup cost, high reliability, and low timeconsumption which can improve the Virtualized Network Function operation.
文摘Network innovation and business transformation are both necessary for telecom operators to adapt to new situations, but operators face challenges in terms of network bearer complexity, business centralization, and IT/CT integration. Network function virtualization (NFV) may inspire new development ideas, but many doubts still exist within industry, especially about how to introduce NFV into an operator' s network. This article describes the latest progress in NFV standardization, NFV requirements and hot technology issues, and typical NFV applications in an operator networks.
文摘As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof paramount importance.This paper introduces a novel integrated model architecture,combining a networkapplication validation framework with an AI-driven reactive system to enhance security in real-time.The proposedmodel leverages machine learning(ML)and artificial intelligence(AI)to dynamically monitor and respond tosecurity threats,effectively mitigating potential risks before they impact the network infrastructure.This dualapproach not only validates the functionality and performance of network applications before their real deploymentbut also enhances the network’s ability to adapt and respond to threats as they arise.The implementation ofthis model,in the shape of an architecture deployed in two distinct sites,demonstrates its practical viability andeffectiveness.Integrating application validation with proactive threat detection and response,the proposed modeladdresses critical security challenges unique to 5G infrastructures.This paper details the model,architecture’sdesign,implementation,and evaluation of this solution,illustrating its potential to improve network securitymanagement in 5G environments significantly.Our findings highlight the architecture’s capability to ensure boththe operational integrity of network applications and the security of the underlying infrastructure,presenting asignificant advancement in network security.
基金supported by the Social Scientific Research Foundation of China(21VSZ126).
文摘The future Sixth-Generation (6G) wireless systems are expected to encounter emerging services with diverserequirements. In this paper, 6G network resource orchestration is optimized to support customized networkslicing of services, and place network functions generated by heterogeneous devices into available resources.This is a combinatorial optimization problem that is solved by developing a Particle Swarm Optimization (PSO)based scheduling strategy with enhanced inertia weight, particle variation, and nonlinear learning factor, therebybalancing the local and global solutions and improving the convergence speed to globally near-optimal solutions.Simulations show that the method improves the convergence speed and the utilization of network resourcescompared with other variants of PSO.
基金Supported by the National Key Research and Development Program of China(No.2021YFB2401204)。
文摘As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model that makes full use of the gate recurrent unit(GRU)algorithm.Based on the fragmentation prediction model,one virtual optical network mapping scheme is presented for edge computing driven EON.With the minimum of fragmentation degree all over the whole EON,the virtual network mapping can be successively conducted.Test results show that the proposed approach can reduce blocking rate,and the supporting ability for virtual optical network services is greatly improved.
文摘Innovations in new applications and technological advancements are driving the evolution of network architectures towards flexibility and automation.Network Function Virtualization(NFV)deploys Network Functions(NFs)as software applications onto cloud infrastructures,redefining the development,deployment,and operation models of communication networks,thereby meeting the evolution demands of networks.However,after more than a decade of development,the progress of network service operators in NFV has not met expectations,partly because some key technologies remain unresolved.To accelerate the large-scale commercial use of NFV,this paper focuses on reviewing relevant literature from the past five years.Based on practical applications and insights into future trends,we explore the three directions of network virtualization,network cloudification,and network service orientation.We investigate the most representative technologies and the latest research progress in these fields,analyze the current problems and challenges,and provide corresponding suggestions on how to deal with them.Finally,we forecast future directions of technological development.
基金supported by the National Natural Science Foundation of China under Grants 61372124 and 61401225the National Science Foundation of Jiangsu Province under Grant BK20140894the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant KYCX17_0784
文摘Network virtualization(NV) is considered as an enabling tool to remove the gradual ossification of current Internet. In the network virtualization environment, a set of heterogeneous virtual networks(VNs), isolated from each other, share the underlying resources of one or multiple substrate networks(SNs) according to the resource allocation strategy. This kind of resource allocation strategy is commonly known as so called Virtual Network Embedding(VNE) algorithm in network virtualization. Owing to the common sense that VNE problem is NP-hard in nature, most of VNE algorithms proposed in the literature are heuristic. This paper surveys and analyzes a number of representative heuristic solutions in the literature. Apart from the analysis of representative heuristic solutions, a taxonomy of the heuristic solutions is also presented in the form of table. Future research directions of VNE, especially for the heuristics, are emphasized and highlighted at the end of this survey.
基金This material is supported by the National Natural Science Foundation of China under Grant No.61001116 and 61121001,Beijing Nova Programme No.Z131101000413030,the National Major Project No.2013ZX03003002 and Program for Changjiang Scholars and Innovative Research Team in University No.IRT1049
文摘Software-Defined Network (SDN) empowers the evolution of Internet with the OpenFlow, Network Virtualization and Service Slicing strategies. With the fast increasing requirements of Mobile Internet services, the Internet and Mobile Networks go to the convergence. Mobile Networks can also get benefits from the SDN evolution to fulfill the 5th Generation (5G) capacity booming. The article implements SDN into Frameless Network Architecture (FNA) for 5G Mobile Network evolution with proposed Mobile-oriented OpenFlow Protocol (MOFP). The Control Plane/User Plane (CP/UP) separation and adaptation strategy is proposed to support the User-Centric scenario in FNA. The traditional Base Station is separated with Central Processing Entity (CPE) and Antenna Element (AE) to perform the OpenFlow and Network Virtualization. The AEs are released as new resources for serving users. The mobile-oriented Service Slicing with different Quality of Service (QoS) classification is proposed and Resource Pooling based Virtualized Radio Resource Management (VRRM) is optimized for the Service Slicing strategy with resource-limited feature in Mobile Networks. The capacity gains are provided to show the merits of SDN based FNA. And the MiniNet based Trial Network with Service Slicing is implemented with experimental results.
文摘The virtual network embedding/mapping problem is an important issue in network virtualization in Software-Defined Networking(SDN).It is mainly concerned with mapping virtual network requests,which could be a set of SDN flows,onto a shared substrate network automatically and efficiently.Previous researches mainly focus on developing heuristic algorithms for general topology virtual network.In practice however,the virtual network is usually generated with specific topology for specific purpose.Thus,it is a challenge to optimize the heuristic algorithms with these topology information.In order to deal with this problem,we propose a topology-cognitive algorithm framework,which is composed of a guiding principle for topology algorithm developing and a compound algorithm.The compound algorithm is composed of several subalgorithms,which are optimized for specific topologies.We develop star,tree,and ring topology algorithms as examples,other subalgorithms can be easily achieved following the same framework.The simulation results show that the topology-cognitive algorithm framework is effective in developing new topology algorithms,and the developed compound algorithm greatly enhances the performance of the Revenue/Cost(R/C) ratio and the Runtime than traditional heuristic algorithms for multi-topology virtual network embedding problem.
基金The authors would like to thank the reviewers for their detailed reviews and constructive comments,which have helped improve the quality of this paper.This work was supported by National Science Foundation of China under Grants 6187144。
文摘Network virtualization(NV)is a highprofile way to solve the ossification problem of the nowadays Internet,and be able to support the diversified network naturally.In NV,Virtual Network Embedding(VNE)problem has been widely considered as a crucial issue,which is aimed to embed Virtual Networks(VNs)onto the shared substrate networks(SNs)efficiently.Recently,some VNE approaches have developed Node Ranking strategies to drive and enhance the embedding efficiency.Node Ranking Strategy rank/sort the nodes according to the attributes of the node,including both residual local attributes(CPU,Bandwidth,storage,Etc.)and the global topology attributes(Number of neighborhood Nodes,Delay to other nodes,Etc.).This paper presents an overview of Node Ranking Strategies in Virtual Network Embedding,and possible directions of VNE Node Ranking Strategy.
基金supported by the National Key Research and Development of China under Grant 2018YFC1314903the National Natural Science Foundation of China under Grant 61372124 and Grant 61427801
文摘Network virtualization(NV) is pushed forward by its proponents as a crucial attribute of next generation network, aiming at overcoming the gradual ossification of current networks, particularly to the worldwide Internet. Through virtualization, multiple customized virtual networks(VNs), requested by users, are allowed to coexist on the underlying substrate networks(SNs). In addition, the virtualization scheme contributes to sharing underlying physical resources simultaneously and seamlessly. However, multiple technical issues still stand in the way of NV successful implementation. One key technical issue is virtual network embedding(VNE), known as the resource allocation problem for NV. This paper conducts a survey of embedding algorithms for VNE problem. At first, the NV business model for VNE problem is presented. Then, the latest VNE problem description is presented. Main performance metrics for evaluating embedding algorithms are also involved. Afterwards, existing VNE algorithms are detailed, according to the novel proposed category approach. Next, key future research aspects of embedding algorithms are listed out. Finally, the paper is briefly concluded.