For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass t...For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass transfer coefficient during absorption and both methods give almost the same mass transfer coefficient.While for chemical absorption with ozone decomposition reaction,the common linear least square fitting method is not applicable for the evaluation of ozone mass transfer coefficient due to the difficulty of model linearization for describing ozone concentration dissolved in water.The nonlinear Simplex method obtains the mass transfer coefficient by minimizing the sum of the differences between the simulated and experimental ozone concentration during the whole absorption process,without the limitation of linear relationship between the dissolved ozone concentration and absorption time during the initial stage of absorption.Comparison of the ozone concentration profiles between the simulation and experimental data demonstrates that Simplex method may determine ozone mass transfer coefficient during absorption in an accurate and high efficiency way with wide applicability.展开更多
A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control syst...A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control system for a turbine engine was developed. A performance index based on the integral of absolute error (IAE) was given as an objective function of optimization. In order to avoid the sensitivity that resulted from the initial values of the simplex search method, the traditional Ziegler-Nichols method was used to tune PID parameters to obtain the initial values at first, then the simplex search method was applied to optimize PID parameters for the turbine engine. Simulation results indicate that the simplex search method is a reasonable and effective method for PID controller parameters tuning and optimization.展开更多
In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-...In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-Mead simplex method is presented (HISADE-NMS). The DE has been used in many practical cases and has demonstrated good convergence properties. It has only a few control parameters as number of particles (NP), scaling factor (F) and crossover control (CR), which are kept fixed throughout the entire evolutionary process. However, these control parameters are very sensitive to the setting of the control parameters based on their experiments. The value of control parameters depends on the characteristics of each objective function, therefore, we have to tune their value in each problem that mean it will take too long time to perform. In the new manner, we present a new version of the DE algorithm for obtaining self-adaptive control parameter settings. Some modifications are imposed on DE to improve its capability and efficiency while being hybridized with Nelder-Mead simplex method. To valid the robustness of new hybrid algorithm, we apply it to solve some examples of structural optimization constraints.展开更多
Over the last two decades,stochastic optimization algorithms have proved to be a very promising approach to solving a variety of complex optimization problems.Bald eagle search optimization(BES)as a new stochastic opt...Over the last two decades,stochastic optimization algorithms have proved to be a very promising approach to solving a variety of complex optimization problems.Bald eagle search optimization(BES)as a new stochastic optimization algorithm with fast convergence speed has the ability of prominent optimization and the defect of collapsing in the local best.To avoid BES collapse at local optima,inspired by the fact that the volume of the sphere is the largest when the surface area is certain,an improved bald eagle search optimization algorithm(INMBES)integrating the random shrinkage mechanism of the sphere is proposed.Firstly,the INMBES embeds spherical coordinates to design a more accurate parameter update method to modify the coverage and dispersion of the population.Secondly,the population splits into elite and non-elite groups and the Bernoulli chaos is applied to elite group to tap around potential solutions of the INMBES.The non-elite group is redistributed again and the Nelder-Mead simplex strategy is applied to each group to accelerate the evolution of the worst individual and the convergence process of the INMBES.The results of Friedman and Wilcoxon rank sum tests of CEC2017 in 10,30,50,and 100 dimensions numerical optimization confirm that the INMBES has superior performance in convergence accuracy and avoiding falling into local optimization compared with other potential improved algorithms but inferior to the champion algorithm and ranking third.The three engineering constraint optimization problems and 26 real world problems and the problem of extracting the best feature subset by encapsulated feature selection method verify that the INMBES’s performance ranks first and has achieved satisfactory accuracy in solving practical problems.展开更多
A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its referenc...A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its reference objectives were the best particle and the centroid of all particles except the best particle.The convergence theorems of linear time-varying discrete system proved that simplex-PSO is of consistent asymptotic convergence.In order to reduce the probability of trapping into a local optimal value,an extremum mutation was introduced into simplex-PSO and simplex-PSO-t(simplex-PSO with turbulence) was devised.Several experiments were carried out to verify the validity of simplex-PSO and simplex-PSO-t,and the experimental results confirmed the conclusions:(1) simplex-PSO-t can optimize high-dimension functions with 200-dimensionality;(2) compared PSO with chaos PSO(CPSO),the best optimum index increases by a factor of 1×102-1×104.展开更多
基金Project(2011467001)supported by the Ministry of Environment Protection of ChinaProject(2010DFB94130)supported by the Ministry of Science and Technology of China
文摘For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass transfer coefficient during absorption and both methods give almost the same mass transfer coefficient.While for chemical absorption with ozone decomposition reaction,the common linear least square fitting method is not applicable for the evaluation of ozone mass transfer coefficient due to the difficulty of model linearization for describing ozone concentration dissolved in water.The nonlinear Simplex method obtains the mass transfer coefficient by minimizing the sum of the differences between the simulated and experimental ozone concentration during the whole absorption process,without the limitation of linear relationship between the dissolved ozone concentration and absorption time during the initial stage of absorption.Comparison of the ozone concentration profiles between the simulation and experimental data demonstrates that Simplex method may determine ozone mass transfer coefficient during absorption in an accurate and high efficiency way with wide applicability.
文摘A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control system for a turbine engine was developed. A performance index based on the integral of absolute error (IAE) was given as an objective function of optimization. In order to avoid the sensitivity that resulted from the initial values of the simplex search method, the traditional Ziegler-Nichols method was used to tune PID parameters to obtain the initial values at first, then the simplex search method was applied to optimize PID parameters for the turbine engine. Simulation results indicate that the simplex search method is a reasonable and effective method for PID controller parameters tuning and optimization.
文摘In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-Mead simplex method is presented (HISADE-NMS). The DE has been used in many practical cases and has demonstrated good convergence properties. It has only a few control parameters as number of particles (NP), scaling factor (F) and crossover control (CR), which are kept fixed throughout the entire evolutionary process. However, these control parameters are very sensitive to the setting of the control parameters based on their experiments. The value of control parameters depends on the characteristics of each objective function, therefore, we have to tune their value in each problem that mean it will take too long time to perform. In the new manner, we present a new version of the DE algorithm for obtaining self-adaptive control parameter settings. Some modifications are imposed on DE to improve its capability and efficiency while being hybridized with Nelder-Mead simplex method. To valid the robustness of new hybrid algorithm, we apply it to solve some examples of structural optimization constraints.
基金supported by the National Natural Science Foundation of China No.61976176.
文摘Over the last two decades,stochastic optimization algorithms have proved to be a very promising approach to solving a variety of complex optimization problems.Bald eagle search optimization(BES)as a new stochastic optimization algorithm with fast convergence speed has the ability of prominent optimization and the defect of collapsing in the local best.To avoid BES collapse at local optima,inspired by the fact that the volume of the sphere is the largest when the surface area is certain,an improved bald eagle search optimization algorithm(INMBES)integrating the random shrinkage mechanism of the sphere is proposed.Firstly,the INMBES embeds spherical coordinates to design a more accurate parameter update method to modify the coverage and dispersion of the population.Secondly,the population splits into elite and non-elite groups and the Bernoulli chaos is applied to elite group to tap around potential solutions of the INMBES.The non-elite group is redistributed again and the Nelder-Mead simplex strategy is applied to each group to accelerate the evolution of the worst individual and the convergence process of the INMBES.The results of Friedman and Wilcoxon rank sum tests of CEC2017 in 10,30,50,and 100 dimensions numerical optimization confirm that the INMBES has superior performance in convergence accuracy and avoiding falling into local optimization compared with other potential improved algorithms but inferior to the champion algorithm and ranking third.The three engineering constraint optimization problems and 26 real world problems and the problem of extracting the best feature subset by encapsulated feature selection method verify that the INMBES’s performance ranks first and has achieved satisfactory accuracy in solving practical problems.
基金Project(50275150) supported by the National Natural Science Foundation of ChinaProject(20070533131) supported by Research Fund for the Doctoral Program of Higher Education of China
文摘A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its reference objectives were the best particle and the centroid of all particles except the best particle.The convergence theorems of linear time-varying discrete system proved that simplex-PSO is of consistent asymptotic convergence.In order to reduce the probability of trapping into a local optimal value,an extremum mutation was introduced into simplex-PSO and simplex-PSO-t(simplex-PSO with turbulence) was devised.Several experiments were carried out to verify the validity of simplex-PSO and simplex-PSO-t,and the experimental results confirmed the conclusions:(1) simplex-PSO-t can optimize high-dimension functions with 200-dimensionality;(2) compared PSO with chaos PSO(CPSO),the best optimum index increases by a factor of 1×102-1×104.