期刊文献+
共找到191篇文章
< 1 2 10 >
每页显示 20 50 100
基于K互近邻与核密度估计的DPC算法 被引量:2
1
作者 周玉 夏浩 +1 位作者 刘虹瑜 白磊 《北京航空航天大学学报》 北大核心 2025年第6期1978-1990,共13页
快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)... 快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)的DPC(KKDPC)算法。通过K近邻和核密度估计方法得到数据点的K互近邻数量和局部核密度;将K互近邻数量与局部核密度进行加和获得新的局部密度;根据数据点的局部密度得到相对距离,并通过构建决策图选取聚类中心及分配非中心点。利用人工数据集和真实数据集进行实验,并与DPC、基于密度的噪声空间聚类应用(DBSCAN)、K-means、模糊C均值聚类算法(FCM)、基于K近邻的DPC(DPCKNN)、近邻优化DPC(DPC-NNO)、基于模糊加权共享邻居的DPC(DPC-FWSN)算法进行对比。通过计算调整互信息(AMI)、调整兰德指数(ARI)、归一化互信息(NMI)来验证KKDPC算法的性能。实验结果表明:KKDPC算法能更加准确地识别聚类中心,有效地提高聚类精度。 展开更多
关键词 聚类算法 密度峰值 K近邻 K互近邻 核密度估计
原文传递
KMDW和ISVDD方法在钻头磨损状态识别中的应用
2
作者 郝旺身 娄本池 +4 位作者 董辛旻 王林恒 朱春辉 陈世金 王亚坤 《重庆理工大学学报(自然科学)》 北大核心 2025年第7期179-186,共8页
为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVD... 为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVDD模型进行故障分类,对混叠样本采用K近邻隶属度值进行识别,并采用改进的蝴蝶优化算法(IBOA)优化SVDD模型参数。在标准数据集上验证所提方法的优越性,结果表明:加入K近邻隶属度值可使F值和准确率分别提升6.36%和6.59%;KMDW相比K均值聚类方法的ARI值和NMI值分别提升10.01%和10.75%,能够达到更好的聚类效果;经蝴蝶优化算法改进后模型识别精度进一步提高。将所提方法应用于钻头磨损状态的识别,识别准确率达到92.83%,证明其具有较好的识别精度和通用性。 展开更多
关键词 SVDD K均值密度权重聚类 蝴蝶优化算法 K近邻算法 钻头磨损状态识别
在线阅读 下载PDF
基于RSA模型和改进K-means算法的电商行业客户细分
3
作者 杨静 《计算机应用与软件》 北大核心 2025年第8期125-131,172,共8页
针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻... 针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻和密度峰值聚类的K-means初始聚类中心选取方法,优化传统K-means算法实现客户细分。通过选取的标准数据集和某零售公司在线交易的真实数据进行实验验证,证明了RSA模型和改进K-means算法具有更加优异的性能。 展开更多
关键词 RSA模型 客户细分 K-MEANS算法 密度峰值聚类 K近邻
在线阅读 下载PDF
基于反向最近邻的密度估计聚类算法
4
作者 许梅梅 侯新民 《计算机工程与应用》 北大核心 2025年第1期165-173,共9页
基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类... 基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类算法(RNN-DEC)。该算法引入反向最近邻来计算数据点的局部密度,将数据点分成强点、弱点和噪声点。使用强点构建聚类算法的骨架,通过软投票的方式将弱点分配到与其相似度最高的簇中去。提出了一种基于反向最近邻的簇融合算法,将相似度高的子簇融合,得到最终的聚类结果。实验结果表明,在一些合成数据集和UCI真实数据集上,相比较于其他经典算法,该算法具有更好的聚类效果。 展开更多
关键词 反向最近邻 局部密度 密度聚类算法 子簇融合
在线阅读 下载PDF
基于自适应DBSCAN聚类的雷达信号分选方法 被引量:1
5
作者 伍佳钰 甄佳奇 《黑龙江大学工程学报(中英俄文)》 2025年第1期62-70,共9页
针对复杂电磁环境下雷达信号分选正确率较低、DBSCAN聚类算法应用于雷达信号分选依赖人工经验选取的问题,提出了基于自适应加权K最近邻-DBSCAN聚类算法的雷达信号分选方法。根据最近邻数据点距离分配权重得到数据列表,引入自衰减系数进... 针对复杂电磁环境下雷达信号分选正确率较低、DBSCAN聚类算法应用于雷达信号分选依赖人工经验选取的问题,提出了基于自适应加权K最近邻-DBSCAN聚类算法的雷达信号分选方法。根据最近邻数据点距离分配权重得到数据列表,引入自衰减系数进行二次处理,降低噪声对参数值的影响。利用改进的K最近邻方法自适应选取超参数Eps和MinPts,计算邻域和核心点边界点构建聚类完成雷达信号分选。仿真生成雷达信号脉冲描述字数据集,添加随机干扰点模拟真实雷达环境。仿真实验验证了该算法在无需手动设置聚类参数的前提下具有有效性,并且提高了分选准确率。 展开更多
关键词 脉冲描述字 雷达信号分选 DBSCAN聚类 K最近邻算法
在线阅读 下载PDF
基于K近邻插补子空间聚类算法的区域碳排放量正反平衡核算方法
6
作者 席海阔 白明辉 +3 位作者 计昊 王梓舟 李宁 吴鹤松 《微型电脑应用》 2025年第12期144-148,共5页
当前区域碳排放量正反平衡核算方法的空间数据聚类能力较差,导致数据中存在缺失,降低了空间数据的完整度,影响了碳排放核算准确率。针对该问题,提出基于K近邻插补子空间聚类算法的区域碳排放量正反平衡核算方法。根据局限性计算理论与... 当前区域碳排放量正反平衡核算方法的空间数据聚类能力较差,导致数据中存在缺失,降低了空间数据的完整度,影响了碳排放核算准确率。针对该问题,提出基于K近邻插补子空间聚类算法的区域碳排放量正反平衡核算方法。根据局限性计算理论与高斯核函数,构建区域基础子空间聚类模型。将K近邻插补应用到子空间聚类处理过程,得到完整的子空间数据聚类结果。在空间数据处理结果的基础上,统计动态碳排放量以及碳排放效率,完成区域碳排放量正反平衡核算。实验结果表明,所提出的方法可有效提升数据完整性与聚类精度,进一步提高核算结果的可靠性与真实性。 展开更多
关键词 K近邻插补子空间聚类算法 区域碳排放量 正反平衡核算 数据缺失
在线阅读 下载PDF
基于多原型交叉感知网络的小样本图像语义分割
7
作者 巴钧才 王昌龙 《燕山大学学报》 北大核心 2025年第4期300-308,共9页
仅利用支持图片的信息不足以为查询图片中未知目标的分割提供充分的指导,为此提出一种基于多原型交叉感知网络的小样本语义分割新方法。首先,利用一组共享权重的主干网络将支持图片和查询图片映射到深度特征空间,并在支持分支借助支持... 仅利用支持图片的信息不足以为查询图片中未知目标的分割提供充分的指导,为此提出一种基于多原型交叉感知网络的小样本语义分割新方法。首先,利用一组共享权重的主干网络将支持图片和查询图片映射到深度特征空间,并在支持分支借助支持图片的真实掩码将支持特征图分解为前景特征图和背景特征图;然后,在支持前景特征图上利用掩码平均池化生成支持前景原型集,在支持背景和查询特征图上利用K近邻聚类算法生成特定区域的多个原型表达;最后,利用交叉注意力机制实现双分支原型集的对齐,强化原型集对目标任务的感知能力。通过在PASCAL-5和COCO-20数据集上测试,实验结果表明所提出方法在1-shot和5-shot任务上实现了可竞争的分割性能。 展开更多
关键词 小样本语义分割 交叉注意力机制 多原型 掩码平均池化 K近邻聚类算法
在线阅读 下载PDF
面向卷绕机装配车间的无线信号聚类分层定位方法
8
作者 丁司懿 童辉辉 +1 位作者 毛新华 张洁 《纺织学报》 北大核心 2025年第6期212-222,共11页
为解决卷绕机装配车间这种复杂环境中难以高效准确定位的问题,提出了基于无线网络(WiFi)的分层定位方法。通过分析装配车间无线网络环境的特点及其特定的定位需求,并结合卷绕机装配车间内的无线网络定位的特点,开发了一种结合XGBoost分... 为解决卷绕机装配车间这种复杂环境中难以高效准确定位的问题,提出了基于无线网络(WiFi)的分层定位方法。通过分析装配车间无线网络环境的特点及其特定的定位需求,并结合卷绕机装配车间内的无线网络定位的特点,开发了一种结合XGBoost分类模型算法、K-means聚类算法和加权K最近邻(WKNN)算法的无线网络分层定位方法。同时,依据装配车间的特点与需求对定位区域进行有效划分并初步构建指纹库,根据装配车间内WiFi信号的特点,使用K-means聚类算法分割并更新指纹库;然后利用XGBoost分类模型算法确定子区域实现粗定位,再用WKNN算法精确定位。实验结果表明:该方法在定位精度上比传统WKNN算法提高了143.82%,平均定位时间减少了约20%;这些改进有效提升了卷绕机装配车间中无线网络定位的准确性和效率。 展开更多
关键词 卷绕机装配车间 无线网络 分层定位方法 XGBoost分类模型 K-MEANS聚类算法 加权K最近邻算法
在线阅读 下载PDF
基于自然和加权共享最近邻的密度峰值聚类算法
9
作者 王森 陈翔 +2 位作者 詹小秦 徐璐 吴启正 《华东交通大学学报》 2025年第4期120-126,共7页
密度峰值聚类(DPC)作为一种高效且不需要迭代的聚类算法得到广泛应用。研究发现,该算法使用密度不均匀数据集上时,DPC很难选择正确的簇中心,且该算法受参数的影响较大。为了解决DPC算法在密度分布不均匀的数据集上效果不佳的问题,提出... 密度峰值聚类(DPC)作为一种高效且不需要迭代的聚类算法得到广泛应用。研究发现,该算法使用密度不均匀数据集上时,DPC很难选择正确的簇中心,且该算法受参数的影响较大。为了解决DPC算法在密度分布不均匀的数据集上效果不佳的问题,提出了一种基于自然和加权共享最近邻的密度峰值聚类算法。该算法首先引入自然最近邻计算加权值,再根据一阶和二阶共享最近邻的定义重新计算数据对象之间的相似度,然后通过融合共享最近邻相似度的定义和自然最近邻权重值计算相对密度和相对距离,最后还设计了新的分类型簇中心扩散分配策略。 展开更多
关键词 聚类算法 密度峰值聚类 自然最近邻 共享最近邻 簇中心扩散
在线阅读 下载PDF
制造企业集群下信息模型驱动的能耗分析及预测方法研究
10
作者 郭志喜 牛鹏飞 +1 位作者 郭峻源 李广朋 《机电工程技术》 2025年第20期1-6,共6页
针对制造企业集群多场景下能源消耗过程,研究面向设备、车间、企业、集群的分层异构数据统一表征模型自动构建技术,提出一种信息模型驱动的能耗分析及预测方法。该方法基于统一协议的OPCUA信息模型构建制造企业集群多能源消耗设备的信... 针对制造企业集群多场景下能源消耗过程,研究面向设备、车间、企业、集群的分层异构数据统一表征模型自动构建技术,提出一种信息模型驱动的能耗分析及预测方法。该方法基于统一协议的OPCUA信息模型构建制造企业集群多能源消耗设备的信息模型,形成统一的数据结构,借助能耗数据集成OPCUA网关,采集多源能耗数据;在数据处理效率约束下,借助多元线性回归算法,消除特征变量冗余信息,实现影响权重提取;在原始的灰色算法、K-近邻法和长短期记忆神经网络的基础之上,提出一种灰色模型与长短期记忆神经网络模型相结合的算法对焊接分厂能耗进行预测,通过对4种模型预测结果和评估指标的对比分析,验证所提算法的有效性和预测准确性。 展开更多
关键词 制造企业集群 OPCUA 信息模型 灰色算法 K-近邻法 长短期记忆神经网络
在线阅读 下载PDF
基于径向基函数神经网络的超分辨率图像重建 被引量:21
11
作者 朱福珍 李金宗 +2 位作者 朱兵 李冬冬 杨学峰 《光学精密工程》 EI CAS CSCD 北大核心 2010年第6期1444-1451,共8页
为了突破成像极限,经济可行地获取高质量的卫星图像,提出了一种基于径向基神经网络的超分辨率图像重建算法。以径向基神经网络为基础,依据卫星图像退化模型获取网络训练所需的学习样本图像,采用向量映射的方式加速网络收敛。其中,径向... 为了突破成像极限,经济可行地获取高质量的卫星图像,提出了一种基于径向基神经网络的超分辨率图像重建算法。以径向基神经网络为基础,依据卫星图像退化模型获取网络训练所需的学习样本图像,采用向量映射的方式加速网络收敛。其中,径向基函数的中心、宽度及网络的隐含层数、连接权值是决定径向基神经网络的关键参数,直接关系到网络的重建性能。采用最近邻聚类算法,动态地建立起基函数的中心及宽度,自适应地确定网络的隐含层数及连接权值。建立起的径向基函数神经网络显著地提高了图像重建性能和网络收敛速度(221s即可收敛)。仿真实验和泛化实验表明,训练好的径向基神经网络可以有效地进行卫星图像的超分辨率重建,效率高,误差小。 展开更多
关键词 图像重建 超分辨率 径向基神经网络 最近邻聚类 向量映射
在线阅读 下载PDF
RBF神经网络在边坡岩体稳定性中的预测研究 被引量:48
12
作者 付义祥 刘世凯 刘大鹏 《武汉理工大学学报(交通科学与工程版)》 北大核心 2003年第2期170-173,共4页
简要分析 RBF网络的结构特点及最近邻聚类学习算法之后 ,以大量边坡工程的稳定状况为学习训练样本及预测样本 ,建立了预报模型 .讨论了基于 RBF神经网络技术的边坡岩体稳定性分析方法及其有效性 .研究表明 ,用
关键词 边坡 岩体工程 稳定性分析 径向基函数 RBF 神经网络 最近邻聚类算法 预报模型
在线阅读 下载PDF
径向基函数(RBF)网络的研究及实现 被引量:51
13
作者 周俊武 孙传尧 王福利 《矿冶》 EI CAS 2001年第4期71-75,共5页
概述人工神经元网络的分类 ,详细分析了RBF网络的结构特点 ,给出了最近邻聚类学习算法的具体过程 ,并利用MATLAB编程语言将此算法编制成标准函数ZJWNNC。该算法是一种在线自适应聚类学习算法 ,不需要事先确定隐含层单元的个数。
关键词 过程控制 径向基函数 最近邻聚类算法 MATLAB语言 人工神经元网络
在线阅读 下载PDF
边坡位移预测的RBF神经网络方法 被引量:19
14
作者 沈强 陈从新 汪稔 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2006年第z1期2882-2887,共6页
利用边坡实测位移序列来预测边坡未来时间的位移,可以有效地判断边坡的稳定性。由于神经网络可以通过对样本的反复学习来反映边坡复杂的非线性演化关系,其预测效果要优于传统的预测方法。RBF神经网络作为一种性能良好的前馈网络,具有更... 利用边坡实测位移序列来预测边坡未来时间的位移,可以有效地判断边坡的稳定性。由于神经网络可以通过对样本的反复学习来反映边坡复杂的非线性演化关系,其预测效果要优于传统的预测方法。RBF神经网络作为一种性能良好的前馈网络,具有更好的逼近能力和全局最优特性。以边坡位移时间序列为基础,采用RBF神经网络建立边坡位移预测模型,通过最近邻聚类学习算法实现边坡位移预测,具有结构简单、学习速度快、预测精度高的特点,网络的外推能力也较强。通过2个工程实例说明边坡位移预测的RBF神经网络方法的有效性。 展开更多
关键词 边坡工程 边坡 位移 RBF神经网络 最近邻聚类算法
在线阅读 下载PDF
RBF神经网络的混合学习算法 被引量:15
15
作者 苏小红 侯秋香 +1 位作者 马培军 王亚东 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第9期1446-1449,共4页
针对RBF神经网络的最近邻聚类学习算法存在的学习精度不理想和固定网络结构的梯度下降训练学习算法存在的中心不易确定、训练时间长等问题,提出一种基于最近邻聚类中心选取和梯度下降训练的RBF神经网络混合学习算法,解决了RBF网络径向... 针对RBF神经网络的最近邻聚类学习算法存在的学习精度不理想和固定网络结构的梯度下降训练学习算法存在的中心不易确定、训练时间长等问题,提出一种基于最近邻聚类中心选取和梯度下降训练的RBF神经网络混合学习算法,解决了RBF网络径向基函数的中心取值问题,提高了网络的学习精度和训练速度.将该算法应用于非线性系统的在线辨识与二维函数的逼近,仿真实验结果证明了该方法的有效性. 展开更多
关键词 RBF神经网络 最近邻聚类学习算法 径向基函数 梯度下降法
在线阅读 下载PDF
改进的神经网络最近邻聚类学习算法及其应用 被引量:25
16
作者 孙延风 梁艳春 孟庆福 《吉林大学学报(信息科学版)》 CAS 2002年第1期63-66,共4页
提出了一种改进的 RBF (Radial Basis Functions,径向基函数 )神经网络最近邻聚类学习算法 ,并将其应用于股市预测问题。模拟结果表明 ,改进算法的拟合效果与拟合误差均明显好于常规最近邻聚类学习算法 ,可以较大幅度提高 RBF神经网络... 提出了一种改进的 RBF (Radial Basis Functions,径向基函数 )神经网络最近邻聚类学习算法 ,并将其应用于股市预测问题。模拟结果表明 ,改进算法的拟合效果与拟合误差均明显好于常规最近邻聚类学习算法 ,可以较大幅度提高 RBF神经网络的预测性能。 展开更多
关键词 神经网络 预测 径向基函数 最近邻聚类算法
在线阅读 下载PDF
基于RBF网络非线性系统逆控制的一种设计方案 被引量:13
17
作者 张绍德 李坤 张世峰 《系统仿真学报》 CAS CSCD 北大核心 2006年第9期2688-2690,共3页
基于逆动力学控制的思想,提出一种RBF神经网络逆控制与PID控制相结合的在线自学习控制方案。辨识器采用RBF神经网络结构和最近邻聚类算法,实现了对系统逆动力学模型的动态辨识。并将辨识模型作为控制器模型,与被控对象串联,构成一个动... 基于逆动力学控制的思想,提出一种RBF神经网络逆控制与PID控制相结合的在线自学习控制方案。辨识器采用RBF神经网络结构和最近邻聚类算法,实现了对系统逆动力学模型的动态辨识。并将辨识模型作为控制器模型,与被控对象串联,构成一个动态伪线性对象,从而使非线性对象的控制问题转换为线性对象的控制问题。仿真实验证明该控制策略不仅能使系统具有良好的动态跟踪性能和抗干扰能力,而且具有较强的鲁棒性。 展开更多
关键词 RBF神经网络 直接逆控制 在线自学习 最近邻聚类算法
在线阅读 下载PDF
基于径向基函数神经网络车辆跟驰模型 被引量:5
18
作者 任雪梅 朱英平 +1 位作者 王武宏 黄鸿 《北京理工大学学报》 EI CAS CSCD 北大核心 2004年第4期331-334,共4页
针对由于驾驶行为的不确定性,难以建立精确的车辆跟驰模型的问题,应用径向基函数神经网络建立了跟驰模型,改进了基于最近邻聚类的网络学习算法,并利用跟驰数据对模型进行了验证.结果表明,该网络模型与多层前馈网络模型相比,结构简单,训... 针对由于驾驶行为的不确定性,难以建立精确的车辆跟驰模型的问题,应用径向基函数神经网络建立了跟驰模型,改进了基于最近邻聚类的网络学习算法,并利用跟驰数据对模型进行了验证.结果表明,该网络模型与多层前馈网络模型相比,结构简单,训练时间短,精度高,适宜在线进行实时预测. 展开更多
关键词 车辆跟驰 人工神经网络 最近邻聚类学习算法 径向基网络
在线阅读 下载PDF
基于RBFNN的DMFC温度建模与神经模糊控制研究 被引量:12
19
作者 戚志东 朱新坚 曹广益 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第1期126-129,137,共5页
为了提高燃料电池的发电性能,直接甲醇燃料电池(DMFC)堆的运行温度应该控制在一个合适的范围内。简单介绍了利用RBF神经网络基于实验的输入输出数据建立DMFC电堆温度模型的方法,避开了电堆的内部复杂性;在控制过程中,将训练好的网络模... 为了提高燃料电池的发电性能,直接甲醇燃料电池(DMFC)堆的运行温度应该控制在一个合适的范围内。简单介绍了利用RBF神经网络基于实验的输入输出数据建立DMFC电堆温度模型的方法,避开了电堆的内部复杂性;在控制过程中,将训练好的网络模型作为DMFC控制系统的参考模型,采用一种改进的模糊遗传算法(FGA)在线对神经模糊控制器的参数进行自适应调整,采用最近邻聚类算法(NNCA)对控制器的模糊规则库进行更新。在仿真实验中,将所提出的算法与非线性PID和传统模糊算法进行比较,结果表明所设计的神经模糊控制器具有较好的性能。 展开更多
关键词 直接甲醇燃料电池 径向基函数神经网络(RBFNN) 模糊遗传算法(FGA) 最近邻聚类算法
在线阅读 下载PDF
基于语义距离的高效文本聚类算法 被引量:15
20
作者 冯少荣 肖文俊 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期30-37,共8页
针对现有文本聚类算法忽略了词之间的语义信息,导致文本的相似度计算不够精确的问题,提出了一种基于语义进行文本聚类的新方法.该方法从语义上具体分析文本,利用文本的具体语义来计算文本间的相似度.聚类采用最近邻聚类算法,并提出第二... 针对现有文本聚类算法忽略了词之间的语义信息,导致文本的相似度计算不够精确的问题,提出了一种基于语义进行文本聚类的新方法.该方法从语义上具体分析文本,利用文本的具体语义来计算文本间的相似度.聚类采用最近邻聚类算法,并提出第二次聚类算法来改进最近邻算法对输入次序敏感的问题.根据相似度权重优胜劣汰类特征词,使得最后类特征词越来越逼近类的主题.实验结果表明,文中所提出的算法在聚类精度和召回率上均优于基于向量空间模型的k-Means聚类算法. 展开更多
关键词 文本聚类 语义距离 相似度 最近邻聚类 聚类算法
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部