The middle segment of the northern margin of the North China Craton (NCC) consists mainly of metamorphosed Archean Dantazi Complex, Paleoproterozoic Hongqiyingzi Complex and unmetamorphosed gabbro-anorthosite-meta-a...The middle segment of the northern margin of the North China Craton (NCC) consists mainly of metamorphosed Archean Dantazi Complex, Paleoproterozoic Hongqiyingzi Complex and unmetamorphosed gabbro-anorthosite-meta-alkaline granite, as well as metamorphosed Late Paleozoic mafic to granitoid rocks in the Damiao-Changshaoying area. The -2.49 Ga Dantazi Complex comprises dioritic-trondhjemitic-granodoritic-monzogranitic gneisses metamorphosed in amphibolite to granulite facies. Petrochemical characteristics reveal that most of the rocks belong to a medium- to high-potassium calc-alkaline series, and display Mg^# less than 40, right-declined REE patterns with no to obviously positive Eu anomalies, evidently negative Th, Nb, Ta and Ti anomalies in primitive mantlenormalized spider diagrams, εNd(t)=+0.65 to -0.03, and depleted mantle model ages TDM=2.78-2.71 Ga. Study in petrogenesis indicates that the rocks were formed from magmatic mixing between mafic magma from the depleted mantle and granitoid magma from partial melting of recycled crustal mafic rocks in a continental margin setting. The 2.44-2.41 Ga Hongqiyingzi Complex is dominated by metamorphic mafic-granodioritic-monzogranitic gneisses, displaying similar petrochemical features to the Dantazi Complex, namely medium to high potassium calc-alkaline series, and the mafic rocks show evident change in LILEs, negative Th, Nb, Ta, Zr anomalies and positive P anomalies. And the other granitiod samples also exhibit negative Th, Nb, Ta, P and Ti anomalies. All rocks in the Hongqiyingzi Complex show right-declined REE patterns without Eu anomaly. The metamorphic mafic rocks with εNd(t) = -1.64 may not be an identical magmatic evolution series with granitoids that have εNd(t) values of +3.19 to +1.94 and TDM ages of 2.55-2.52 Ga. These granitic rocks originated from hybrid between mafic magma from the depleted mantle and magma from partial melting of juvenile crustal mafic rocks in an island arc setting. All the -311 Ma Late Paleozoic metamorphic mafic rocks and related granitic rocks show a medium-potassium calc-alkaline magmatic evolution series, characterized by high Mg^#, obviously negative Th, Nb, Ta anomalies and positive Sr anomalies, from no to strongly negative Ti anomalies and flat REE patterns with εNd(t) = +8.42, implying that the maflc magma was derived from the depleted mantle. However the other granitic rocks are characterized by right-declined REE patterns with no to evidently positive Eu anomalies, significantly low εNd(t) = -13.37 to -14.04, and TDM=1.97-1.96 Ga, revealing that the granitoid magma was derived from hybrid between maflc magma that came from -311 Ma depleted mantle and granitoid magma from Archean to Early Paleoproterozoic ancient crustal recycling. The geochemistry and Nd isotopic characteristics as well as the above geological and geochronological results indicate that the middle segment of the northern margin of the NCC mainly experienced four crustal growth episodes from Archean to Late Paleozoic, which were dominated by three continental marginal arc accretions (-2.49, -2.44 and 311 Ma), except the 1.76-1.68 Ga episode related to post-collisional extension, revealing that the crustal accretion of this segment was chiefly generated from arc accretion and amalgamation to the NCC continental block.展开更多
The Huichizi granite complex is the largest Paleozoic 1-type intrusion located in the North Qinling orogenic belt (NQB). In this study, we present systematic geochemical element data, zircon U-Pb ages, Ln-Hf isotopi...The Huichizi granite complex is the largest Paleozoic 1-type intrusion located in the North Qinling orogenic belt (NQB). In this study, we present systematic geochemical element data, zircon U-Pb ages, Ln-Hf isotopic data, and Sr-Nd isotopic data for the Huichizi granites. In terms of mineral and chemical compositions, these granites are biotite monzonitic and alkali-feldspar granites, both of which are characterized by high SiO2 and total alkali contents and low MgO, TiO2, and TFeO contents. These granites are weakly peraluminous (A/CNK values are 1-1.06 for biotite mon- zonitic granites and 1.04-1.09 for alkali-feldspar granites) and possess the geochemical characteristics of adakitic rocks, e.g., high Sr contents (319 ppm-633 ppm), Sr/Y ratios (18.5-174), and (La/Yb)N ratios (17.6-57) and low MgO (0.04 wt.%-0.83 wt.%), Y (3.0 ppm-17.2 ppm), and heavy rare-earth element (HREE) contents. This indicates that these rocks were most likely derived from the partial melting of a thickened lower crust. In situ zircon U-Pb dating of these granites yields Early Caledonian ages (437 Ma for biotite monzonitic granites and 424 Ma for alkali-feldspar granites), indicating that the Huichizi granitic complex is the product of multi-periodic magmatism. The positive but varying zircon tHe(t) values (+0.6 to +8.5) suggest that this thickened lower crust was mainly juvenile, i.e., accreted from depleted mantle during the Neo-Mesoproterozoic Period, but involved the ancient recycled crust. Biotite monzonitic granites formed during crust thickening at the extrusion stage, whereas the alkali granites formed during crust thickening at the extension stage (post extrusion). The Huichizi granite complex witnessed the process of extrusion to extension because of the collision between the NCB and the Qinling microcontinent in the Caledonian.展开更多
The title complexes (LnL3 (HL) (H2O) ]2· 2EtOH·2H2O (Ln= Nd (1), La (2), HL=adamantanecarboxylic acid) were prepared and determined by single-crystal X-ray diffraction. Both complexes crystallize ...The title complexes (LnL3 (HL) (H2O) ]2· 2EtOH·2H2O (Ln= Nd (1), La (2), HL=adamantanecarboxylic acid) were prepared and determined by single-crystal X-ray diffraction. Both complexes crystallize in triclinic system with space group P 1^-, cell parameters are: complex (1) a = 1.0556(2) nm, b =1.4913(3) nm, c = 1.4920(3) nm, a = 106.26 (3)°, β=93.51(3)°, γ=97.23(3)°, V=2.2253 (5) nm^3, Dcal=1.409 g · cm^-3, Z = I , F ( 000 ) = 990, μ(Mo Kα) = 1. 225 mm^-1, M, = 1884.50; complex (2) a = 1.0453(2) nm, b = 1.4971(3)nm, c = 1.5052(3) nm, α = 106.07(3)°, β =93.58 (3)°, γ=97.56(3)°, V=2.2391(5)nm^3, Dcal= 1.397 g·cm^-3, Z = 1, F(000) =984, μ(Mo Kα) = 1.015 mm^-1, Mr= 1877.88. The final R and wR are 0. 0396 and 0. 1062 for 8589 (1 ≥ 2σ (I)) observed reflections for complex (1), 0.0505 and 0. 1344 for 8417 ( 1 ≥ 2σ (1) ) observed reflections for complex (2), respectively. The crystals are consisted of a binuelear molecule. The coordination geometry of the Ln( Ⅲ ) ion can be described as trieapped trigonal prism.展开更多
The Banded Gneissic Complex(BGC) of the Aravalli Craton is divided into BGC-I and BGC-Ⅱ; the BGC-Ⅱ(central Rajasthan) is comprised of the Sandmata Complex and the Mangalwar Complex. We report elemental and Nd-isotop...The Banded Gneissic Complex(BGC) of the Aravalli Craton is divided into BGC-I and BGC-Ⅱ; the BGC-Ⅱ(central Rajasthan) is comprised of the Sandmata Complex and the Mangalwar Complex. We report elemental and Nd-isotope geochemistry of basement gneisses of the Mangalwar Complex and constrain its origin and evolution. Geochemically, the basement gneisses have been classified as low-SiO_2 gneisses(LSG) and high-SiO_2 gneisses(HSG). Both the LSG and HSG are potassic, calc-alkaline and peraluminous in nature. The LSG are enriched in incompatible(K, Sr, Ba, large ion lithophile elements) and compatible elements(MgO, Cr, and Ni). They display fractionated rare earth element patterns(avg.La_N/Yb_N=12.1)with small Eu-anomaly(δEu=0.9), and exhibit negative anomalies of Nb and Ti in primitive mantlenormalized multi-element diagram. In terms of Nd-isotope geochemistry, the LSG are characterized by_(εNd)(t)=4.2 and depleted mantle model age of 3.3 Ga. To account for these geochemical characteristics we propose a three-stage petrogenetic model for the LSG:(1) fluids released from dehydration of subducting slab metasomatised the mantle-wedge;(2) the subducting slab underwent slab-breakoff causing upwelling and decompression melting of the asthenosphere during waning stage of subduction; and(3)upwelling asthenosphere provided the requisite heat for partial melting of the metasomatised mantlewedge leading to generation of the LSG parental magma. Asthenospheric upwelling also contributed in the LSG petrogenesis which is evident from its high Mg#(avg. 0.53). The LSG formed in this way are contemporary and chemically akin to sanukitoids of the BGC-I and Archean sanukitoids reported elsewhere. This provides a basis to consider the LSG as a part of the BGC-I. Contrary to the LSG, the HSG are depleted in compatible elements(MgO=avg. 1.1 wt.%; Cr=avg. 8 ppm; Ni=avg. 6 ppm) but enriched in incompatible elements(Sr=avg. 239 ppm, Ba=avg. 469 ppm). Its_(εNd)(t) values vary from-9.5 to-5.4.These chemical features of the HSG are akin to potassic granitoids found elsewhere. In this backdrop, we propose that the HSG suite of the Mangalwar Complex was derived from re-melting(partial) of an older crust(TTG?) occurring within the BGC-Ⅱ.展开更多
基金This study was financially supported by the National Natural Science Foundation of China (Grant No: 40472096, 40412012035, 40511140503, 40502009 and 40472118).
文摘The middle segment of the northern margin of the North China Craton (NCC) consists mainly of metamorphosed Archean Dantazi Complex, Paleoproterozoic Hongqiyingzi Complex and unmetamorphosed gabbro-anorthosite-meta-alkaline granite, as well as metamorphosed Late Paleozoic mafic to granitoid rocks in the Damiao-Changshaoying area. The -2.49 Ga Dantazi Complex comprises dioritic-trondhjemitic-granodoritic-monzogranitic gneisses metamorphosed in amphibolite to granulite facies. Petrochemical characteristics reveal that most of the rocks belong to a medium- to high-potassium calc-alkaline series, and display Mg^# less than 40, right-declined REE patterns with no to obviously positive Eu anomalies, evidently negative Th, Nb, Ta and Ti anomalies in primitive mantlenormalized spider diagrams, εNd(t)=+0.65 to -0.03, and depleted mantle model ages TDM=2.78-2.71 Ga. Study in petrogenesis indicates that the rocks were formed from magmatic mixing between mafic magma from the depleted mantle and granitoid magma from partial melting of recycled crustal mafic rocks in a continental margin setting. The 2.44-2.41 Ga Hongqiyingzi Complex is dominated by metamorphic mafic-granodioritic-monzogranitic gneisses, displaying similar petrochemical features to the Dantazi Complex, namely medium to high potassium calc-alkaline series, and the mafic rocks show evident change in LILEs, negative Th, Nb, Ta, Zr anomalies and positive P anomalies. And the other granitiod samples also exhibit negative Th, Nb, Ta, P and Ti anomalies. All rocks in the Hongqiyingzi Complex show right-declined REE patterns without Eu anomaly. The metamorphic mafic rocks with εNd(t) = -1.64 may not be an identical magmatic evolution series with granitoids that have εNd(t) values of +3.19 to +1.94 and TDM ages of 2.55-2.52 Ga. These granitic rocks originated from hybrid between mafic magma from the depleted mantle and magma from partial melting of juvenile crustal mafic rocks in an island arc setting. All the -311 Ma Late Paleozoic metamorphic mafic rocks and related granitic rocks show a medium-potassium calc-alkaline magmatic evolution series, characterized by high Mg^#, obviously negative Th, Nb, Ta anomalies and positive Sr anomalies, from no to strongly negative Ti anomalies and flat REE patterns with εNd(t) = +8.42, implying that the maflc magma was derived from the depleted mantle. However the other granitic rocks are characterized by right-declined REE patterns with no to evidently positive Eu anomalies, significantly low εNd(t) = -13.37 to -14.04, and TDM=1.97-1.96 Ga, revealing that the granitoid magma was derived from hybrid between maflc magma that came from -311 Ma depleted mantle and granitoid magma from Archean to Early Paleoproterozoic ancient crustal recycling. The geochemistry and Nd isotopic characteristics as well as the above geological and geochronological results indicate that the middle segment of the northern margin of the NCC mainly experienced four crustal growth episodes from Archean to Late Paleozoic, which were dominated by three continental marginal arc accretions (-2.49, -2.44 and 311 Ma), except the 1.76-1.68 Ga episode related to post-collisional extension, revealing that the crustal accretion of this segment was chiefly generated from arc accretion and amalgamation to the NCC continental block.
基金financially supported by the National Basic Research Program of China (No. 2014CB440906)the Strateic Priority Research Program (B) of Chinese Academy of Sciences (No. XDB18030200)the National Natural Sciences Foundation of China (Nos. 41473049, 41103027)
文摘The Huichizi granite complex is the largest Paleozoic 1-type intrusion located in the North Qinling orogenic belt (NQB). In this study, we present systematic geochemical element data, zircon U-Pb ages, Ln-Hf isotopic data, and Sr-Nd isotopic data for the Huichizi granites. In terms of mineral and chemical compositions, these granites are biotite monzonitic and alkali-feldspar granites, both of which are characterized by high SiO2 and total alkali contents and low MgO, TiO2, and TFeO contents. These granites are weakly peraluminous (A/CNK values are 1-1.06 for biotite mon- zonitic granites and 1.04-1.09 for alkali-feldspar granites) and possess the geochemical characteristics of adakitic rocks, e.g., high Sr contents (319 ppm-633 ppm), Sr/Y ratios (18.5-174), and (La/Yb)N ratios (17.6-57) and low MgO (0.04 wt.%-0.83 wt.%), Y (3.0 ppm-17.2 ppm), and heavy rare-earth element (HREE) contents. This indicates that these rocks were most likely derived from the partial melting of a thickened lower crust. In situ zircon U-Pb dating of these granites yields Early Caledonian ages (437 Ma for biotite monzonitic granites and 424 Ma for alkali-feldspar granites), indicating that the Huichizi granitic complex is the product of multi-periodic magmatism. The positive but varying zircon tHe(t) values (+0.6 to +8.5) suggest that this thickened lower crust was mainly juvenile, i.e., accreted from depleted mantle during the Neo-Mesoproterozoic Period, but involved the ancient recycled crust. Biotite monzonitic granites formed during crust thickening at the extrusion stage, whereas the alkali granites formed during crust thickening at the extension stage (post extrusion). The Huichizi granite complex witnessed the process of extrusion to extension because of the collision between the NCB and the Qinling microcontinent in the Caledonian.
文摘The title complexes (LnL3 (HL) (H2O) ]2· 2EtOH·2H2O (Ln= Nd (1), La (2), HL=adamantanecarboxylic acid) were prepared and determined by single-crystal X-ray diffraction. Both complexes crystallize in triclinic system with space group P 1^-, cell parameters are: complex (1) a = 1.0556(2) nm, b =1.4913(3) nm, c = 1.4920(3) nm, a = 106.26 (3)°, β=93.51(3)°, γ=97.23(3)°, V=2.2253 (5) nm^3, Dcal=1.409 g · cm^-3, Z = I , F ( 000 ) = 990, μ(Mo Kα) = 1. 225 mm^-1, M, = 1884.50; complex (2) a = 1.0453(2) nm, b = 1.4971(3)nm, c = 1.5052(3) nm, α = 106.07(3)°, β =93.58 (3)°, γ=97.56(3)°, V=2.2391(5)nm^3, Dcal= 1.397 g·cm^-3, Z = 1, F(000) =984, μ(Mo Kα) = 1.015 mm^-1, Mr= 1877.88. The final R and wR are 0. 0396 and 0. 1062 for 8589 (1 ≥ 2σ (I)) observed reflections for complex (1), 0.0505 and 0. 1344 for 8417 ( 1 ≥ 2σ (1) ) observed reflections for complex (2), respectively. The crystals are consisted of a binuelear molecule. The coordination geometry of the Ln( Ⅲ ) ion can be described as trieapped trigonal prism.
文摘The Banded Gneissic Complex(BGC) of the Aravalli Craton is divided into BGC-I and BGC-Ⅱ; the BGC-Ⅱ(central Rajasthan) is comprised of the Sandmata Complex and the Mangalwar Complex. We report elemental and Nd-isotope geochemistry of basement gneisses of the Mangalwar Complex and constrain its origin and evolution. Geochemically, the basement gneisses have been classified as low-SiO_2 gneisses(LSG) and high-SiO_2 gneisses(HSG). Both the LSG and HSG are potassic, calc-alkaline and peraluminous in nature. The LSG are enriched in incompatible(K, Sr, Ba, large ion lithophile elements) and compatible elements(MgO, Cr, and Ni). They display fractionated rare earth element patterns(avg.La_N/Yb_N=12.1)with small Eu-anomaly(δEu=0.9), and exhibit negative anomalies of Nb and Ti in primitive mantlenormalized multi-element diagram. In terms of Nd-isotope geochemistry, the LSG are characterized by_(εNd)(t)=4.2 and depleted mantle model age of 3.3 Ga. To account for these geochemical characteristics we propose a three-stage petrogenetic model for the LSG:(1) fluids released from dehydration of subducting slab metasomatised the mantle-wedge;(2) the subducting slab underwent slab-breakoff causing upwelling and decompression melting of the asthenosphere during waning stage of subduction; and(3)upwelling asthenosphere provided the requisite heat for partial melting of the metasomatised mantlewedge leading to generation of the LSG parental magma. Asthenospheric upwelling also contributed in the LSG petrogenesis which is evident from its high Mg#(avg. 0.53). The LSG formed in this way are contemporary and chemically akin to sanukitoids of the BGC-I and Archean sanukitoids reported elsewhere. This provides a basis to consider the LSG as a part of the BGC-I. Contrary to the LSG, the HSG are depleted in compatible elements(MgO=avg. 1.1 wt.%; Cr=avg. 8 ppm; Ni=avg. 6 ppm) but enriched in incompatible elements(Sr=avg. 239 ppm, Ba=avg. 469 ppm). Its_(εNd)(t) values vary from-9.5 to-5.4.These chemical features of the HSG are akin to potassic granitoids found elsewhere. In this backdrop, we propose that the HSG suite of the Mangalwar Complex was derived from re-melting(partial) of an older crust(TTG?) occurring within the BGC-Ⅱ.