In this research,2205/Q235 B clad plates were prepared by a vacuum hot rolling composite process.The effects of adding Fe,Ni,and Nb interlayers on the bonding interface structures and the shear strengths of the clad s...In this research,2205/Q235 B clad plates were prepared by a vacuum hot rolling composite process.The effects of adding Fe,Ni,and Nb interlayers on the bonding interface structures and the shear strengths of the clad steel plates were studied.The results showed that 2205 duplex stainless steel and the three interlayers produced a large amount of plastic deformation and low-angle boundaries,and the main structures were the recrystallized and deformed grains.There were many recrystallized grains in the microstructure of the Q235 B low-carbon steel due to the low deformation in the rolling process.The Fe interlayer had better wettability with the two kinds of steel,but the lower strength led to the reduction of shear strength by about14 MPa compared with the original clad steel plate.The C element in the Q235 B low-carbon steel easily diffused into the Fe interlayer,and the clad steel plate attained a poor corrosion resistance because a large decarburization area was formed.The Nb interlayer reacted with the Mo element in the 2205 duplex stainless steel to form an Nb-Mo binary alloy,which generated long-banded ferrite.The decarburization area was also produced because the Nb reacted with the C element in the Q235 B to form hard and brittle NbCx.As a result,the shear strength was significantly reduced by about 282 MPa,and the corrosion resistance of the bonding surface was deteriorated.The Ni interlayer did not react with the alloy elements in both sides,and therefore effectively prevented element diffusion and improved the corrosion resistance of the bonding surface.Due to the low strength of the Ni interlayer and the increased number of bonding surfaces of the clad steel plates,the shear strength was reduced to some extent(about 40 MPa),but it still met the engineering application standards.展开更多
Stainless steel(SS)and titanium alloys can be welded in the solid-state by high speed oblique impact.Here,the effect of a niobium(Nb)interlayer on weld strength and thermal stability is evaluated.Both Ti/SS and Ti/Nb/...Stainless steel(SS)and titanium alloys can be welded in the solid-state by high speed oblique impact.Here,the effect of a niobium(Nb)interlayer on weld strength and thermal stability is evaluated.Both Ti/SS and Ti/Nb/SS welds were subjected to thermal exposure ranging from 300℃ to 950℃ for 1.5 h.Thermal exposure monotonically decreases the strength and toughness of the Ti/SS pair with a dramatic falloff in strength and change in failure mode from partial pullout failure to full interfacial fracture at 600℃.With the interlayer,toughness was increased versus baseline up to 700℃ thermal exposure and then intermetallic formation again caused falloff in properties.Guidelines for the production,properties and applications of these classes of welds are provided.展开更多
基金financially supported by the Shandong Taishan Industry Leading Talents Project(SF1503302301)
文摘In this research,2205/Q235 B clad plates were prepared by a vacuum hot rolling composite process.The effects of adding Fe,Ni,and Nb interlayers on the bonding interface structures and the shear strengths of the clad steel plates were studied.The results showed that 2205 duplex stainless steel and the three interlayers produced a large amount of plastic deformation and low-angle boundaries,and the main structures were the recrystallized and deformed grains.There were many recrystallized grains in the microstructure of the Q235 B low-carbon steel due to the low deformation in the rolling process.The Fe interlayer had better wettability with the two kinds of steel,but the lower strength led to the reduction of shear strength by about14 MPa compared with the original clad steel plate.The C element in the Q235 B low-carbon steel easily diffused into the Fe interlayer,and the clad steel plate attained a poor corrosion resistance because a large decarburization area was formed.The Nb interlayer reacted with the Mo element in the 2205 duplex stainless steel to form an Nb-Mo binary alloy,which generated long-banded ferrite.The decarburization area was also produced because the Nb reacted with the C element in the Q235 B to form hard and brittle NbCx.As a result,the shear strength was significantly reduced by about 282 MPa,and the corrosion resistance of the bonding surface was deteriorated.The Ni interlayer did not react with the alloy elements in both sides,and therefore effectively prevented element diffusion and improved the corrosion resistance of the bonding surface.Due to the low strength of the Ni interlayer and the increased number of bonding surfaces of the clad steel plates,the shear strength was reduced to some extent(about 40 MPa),but it still met the engineering application standards.
基金This work was financially supported by Lightweight Innovations for Tomorrow(LIFT).Project number and title are Joining-R2-1-60061248 and Development of Technologies for Joining Titanium to Steel,respectivelysupport from National Science Foundation under a Major Research Instrument Grant No.1531785。
文摘Stainless steel(SS)and titanium alloys can be welded in the solid-state by high speed oblique impact.Here,the effect of a niobium(Nb)interlayer on weld strength and thermal stability is evaluated.Both Ti/SS and Ti/Nb/SS welds were subjected to thermal exposure ranging from 300℃ to 950℃ for 1.5 h.Thermal exposure monotonically decreases the strength and toughness of the Ti/SS pair with a dramatic falloff in strength and change in failure mode from partial pullout failure to full interfacial fracture at 600℃.With the interlayer,toughness was increased versus baseline up to 700℃ thermal exposure and then intermetallic formation again caused falloff in properties.Guidelines for the production,properties and applications of these classes of welds are provided.