This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local ...This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local (in time) existence of a weak solution is established; in particular, the density is positive and the solution is regular away from the free boundary.展开更多
In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case...In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case that across the free surface stress tensor is balanced by a constant exterior pressure. Under certain assumptions imposed on the initial data, we prove that there exists a unique global strong solution which tends pointwise to a non-vacuum equilibrium state at an exponential time-rate as the time tends to infinity.展开更多
In this article, we are concerned with the stability of stationary solution for outflow problem on the Navier-Stokes-Poisson system. We obtain the unique existence and the asymptotic stability of stationary solution. ...In this article, we are concerned with the stability of stationary solution for outflow problem on the Navier-Stokes-Poisson system. We obtain the unique existence and the asymptotic stability of stationary solution. Moreover, the convergence rate of solution towards stationary solution is obtained. Precisely, if an initial perturbation decays with the algebraic or the exponential rate in space, the solution converges to the corresponding stationary solution as time tends to infinity with the algebraic or the exponential rate in time. The proof is based on the weighted energy method by taking into account the effect of the self-consistent electric field on the viscous compressible fluid.展开更多
In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in s...In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in some sense. In our result, we give a relation between the initial energy and the viscosity coefficient μ, and it shows that the initial energy can be large if the coefficient of the viscosity μ is taken to be large, which implies that large viscosity μ means large solution.展开更多
In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique ...In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique is first to use a standard finite element discretization on a coarse mesh to approximate low frequencies, then to apply the simple and Newton scheme to linearize discretizations on a fine grid. At this process, multiscale finite element method as a stabilized method deals with the lowest equal-order finite element pairs not satisfying the inf-sup condition. Under the uniqueness condition, error analyses for both algorithms are given. Numerical results are reported to demonstrate the effectiveness of the simple and Newton scheme.展开更多
This paper presents a very short solution to the 4th Millennium problem about the Navier-Stokes equations. The solution proves that there cannot be a blow up in finite or infinite time, and the local in time smooth so...This paper presents a very short solution to the 4th Millennium problem about the Navier-Stokes equations. The solution proves that there cannot be a blow up in finite or infinite time, and the local in time smooth solutions can be extended for all times, thus regularity. This happily is proved not only for the Navier-Stokes equations but also for the inviscid case of the Euler equations both for the periodic or non-periodic formulation and without external forcing (homogeneous case). The proof is based on an appropriate modified extension in the viscous case of the well-known Helmholtz-Kelvin-Stokes theorem of invariance of the circulation of velocity in the Euler inviscid flows. This is essentially a 1D line density of (rotatory) momentum conservation. We discover a similar 2D surface density of (rotatory) momentum conservation. These conservations are indispensable, besides to the ordinary momentum conservation, to prove that there cannot be a blow-up in finite time, of the point vorticities, thus regularity.展开更多
In this article, we prove the local existence and uniqueness of the classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with large initial data and vacuum, if the shear viscosity ...In this article, we prove the local existence and uniqueness of the classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with large initial data and vacuum, if the shear viscosity μ is a positive constant and the bulk viscosity λ(ρ) = ρ^β with β≥0. Note that the initial data can be arbitrarily large to contain vacuum states.展开更多
A necessary and sufficient conditions of the existence of formal solution to the initial value problem of Navier-Stokes equation an R-3 x R are presented. A computation case is also given.
We consider the Cauchy problem for the three-dimensional pressureless Navier-Stokes/Navier-Stokes system,which consists of the pressureless Navier-Stokes equations for(n,w)coupled with the isentropic compressible Navi...We consider the Cauchy problem for the three-dimensional pressureless Navier-Stokes/Navier-Stokes system,which consists of the pressureless Navier-Stokes equations for(n,w)coupled with the isentropic compressible Navier-Stokes equations for(ρ,u)through a drag force term n(w−u).We prove the global existence of strong solutions to the coupled system when the initial data are small perturbations of the constant equilibrium state.However,due to the pressureless structure,one can only deal with the density n of the pressureless flow through the transport equation and it is crucial to obtain the exact time-decay rates for the corresponding velocity w of the pressureless flow.To this end,we make use of the spectral analysis,low-high frequency decomposition and time-weighted energy method to deduce the large time behavior of(w,ρ,u)and consequently establish the Lyapunov stability of the density n in Sobolev space.展开更多
We consider the Cauchy problem for one-dimensional isentropic compressible Navier-Stokes equations with density-dependent viscosity coefficient. For regular initial data, we show that the unique strong solution exits ...We consider the Cauchy problem for one-dimensional isentropic compressible Navier-Stokes equations with density-dependent viscosity coefficient. For regular initial data, we show that the unique strong solution exits globally in time and converges to the equilibrium state time asymptotically. When initial density is piecewise regular with jump discontinuity, we show that there exists a unique global piecewise regular solution. In particular, the jump discontinuity of the density decays exponentially and the piecewise regular solution tends to the equilibrium state as t →+∞展开更多
This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy...This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy but possibly large oscillations of rarefaction wave solutions near phase separation,and where the strength of the initial phase field could be arbitrarily large,we prove that the solution of the Cauchy problem exists for all time,and converges to the centered rarefaction wave solution of the corresponding standard two-phase Euler equation as the viscosity and the thickness of the interface tend to zero.The proof is mainly based on a scaling argument and a basic energy method.展开更多
In this paper, we investigate the mixed spectral method using generalized Laguerre functions for exterior problems of fourth order partial differential equations. A mixed spectral scheme is provided for the stream fun...In this paper, we investigate the mixed spectral method using generalized Laguerre functions for exterior problems of fourth order partial differential equations. A mixed spectral scheme is provided for the stream function form of the Navier-Stokes equations outside a disc. Numerical results demonstrate the spectral accuracy in space.展开更多
基金partially supported by the NSFC(10871134)the AHRDIHL Project of Beijing Municipality (PHR201006107)
文摘This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local (in time) existence of a weak solution is established; in particular, the density is positive and the solution is regular away from the free boundary.
基金supported by NNSFC(11101145),supported by NNSFC(11326140 and11501323)China Postdoctoral Science Foundation(2012M520360)+1 种基金Doctoral Foundation of North China University of Water Sources and Electric Power(201032),Innovation Scientists and Technicians Troop Construction Projects of Henan Provincethe Doctoral Starting up Foundation of Quzhou University(BSYJ201314 and XNZQN201313)
文摘In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case that across the free surface stress tensor is balanced by a constant exterior pressure. Under certain assumptions imposed on the initial data, we prove that there exists a unique global strong solution which tends pointwise to a non-vacuum equilibrium state at an exponential time-rate as the time tends to infinity.
基金supported by the National Natural Science Foundation of China(11331005,11471134)the Program for Changjiang Scholars and Innovative Research Team in University(IRT13066)the Scientific Research Funds of Huaqiao University(15BS201,15BS309)
文摘In this article, we are concerned with the stability of stationary solution for outflow problem on the Navier-Stokes-Poisson system. We obtain the unique existence and the asymptotic stability of stationary solution. Moreover, the convergence rate of solution towards stationary solution is obtained. Precisely, if an initial perturbation decays with the algebraic or the exponential rate in space, the solution converges to the corresponding stationary solution as time tends to infinity with the algebraic or the exponential rate in time. The proof is based on the weighted energy method by taking into account the effect of the self-consistent electric field on the viscous compressible fluid.
文摘In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in some sense. In our result, we give a relation between the initial energy and the viscosity coefficient μ, and it shows that the initial energy can be large if the coefficient of the viscosity μ is taken to be large, which implies that large viscosity μ means large solution.
文摘In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique is first to use a standard finite element discretization on a coarse mesh to approximate low frequencies, then to apply the simple and Newton scheme to linearize discretizations on a fine grid. At this process, multiscale finite element method as a stabilized method deals with the lowest equal-order finite element pairs not satisfying the inf-sup condition. Under the uniqueness condition, error analyses for both algorithms are given. Numerical results are reported to demonstrate the effectiveness of the simple and Newton scheme.
文摘This paper presents a very short solution to the 4th Millennium problem about the Navier-Stokes equations. The solution proves that there cannot be a blow up in finite or infinite time, and the local in time smooth solutions can be extended for all times, thus regularity. This happily is proved not only for the Navier-Stokes equations but also for the inviscid case of the Euler equations both for the periodic or non-periodic formulation and without external forcing (homogeneous case). The proof is based on an appropriate modified extension in the viscous case of the well-known Helmholtz-Kelvin-Stokes theorem of invariance of the circulation of velocity in the Euler inviscid flows. This is essentially a 1D line density of (rotatory) momentum conservation. We discover a similar 2D surface density of (rotatory) momentum conservation. These conservations are indispensable, besides to the ordinary momentum conservation, to prove that there cannot be a blow-up in finite time, of the point vorticities, thus regularity.
基金supported by China Postdoctoral Science Foundation(2012M520205)supported by National Natural SciencesFoundation of China(11171229,11231006)Project of Beijing Chang Cheng Xue Zhe
文摘In this article, we prove the local existence and uniqueness of the classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with large initial data and vacuum, if the shear viscosity μ is a positive constant and the bulk viscosity λ(ρ) = ρ^β with β≥0. Note that the initial data can be arbitrarily large to contain vacuum states.
文摘A necessary and sufficient conditions of the existence of formal solution to the initial value problem of Navier-Stokes equation an R-3 x R are presented. A computation case is also given.
基金supported by the National Natural Science Foundation of China(11931010,12226326,12226327)the Key Research Project of Academy for Multidisciplinary Studies,Capital Normal Universitysupported by the Anhui Provincial Natural Science Foundation(2408085QA031).
文摘We consider the Cauchy problem for the three-dimensional pressureless Navier-Stokes/Navier-Stokes system,which consists of the pressureless Navier-Stokes equations for(n,w)coupled with the isentropic compressible Navier-Stokes equations for(ρ,u)through a drag force term n(w−u).We prove the global existence of strong solutions to the coupled system when the initial data are small perturbations of the constant equilibrium state.However,due to the pressureless structure,one can only deal with the density n of the pressureless flow through the transport equation and it is crucial to obtain the exact time-decay rates for the corresponding velocity w of the pressureless flow.To this end,we make use of the spectral analysis,low-high frequency decomposition and time-weighted energy method to deduce the large time behavior of(w,ρ,u)and consequently establish the Lyapunov stability of the density n in Sobolev space.
基金The research of R.X. Lian is supported by NSFC (11101145)The research of H.L. Li is partially supported by NSFC (10871134,11171228)+2 种基金the Huo Ying Dong Fund (111033)the Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHR201006107)The research of L. Xiao is supported by NSFC (11171327)
文摘We consider the Cauchy problem for one-dimensional isentropic compressible Navier-Stokes equations with density-dependent viscosity coefficient. For regular initial data, we show that the unique strong solution exits globally in time and converges to the equilibrium state time asymptotically. When initial density is piecewise regular with jump discontinuity, we show that there exists a unique global piecewise regular solution. In particular, the jump discontinuity of the density decays exponentially and the piecewise regular solution tends to the equilibrium state as t →+∞
基金supported by the National Natural Science Foundation of China(12361044)supported by the National Natural Science Foundation of China(12171024,11971217,11971020)supported by the Academic and Technical Leaders Training Plan of Jiangxi Province(20212BCJ23027)。
文摘This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy but possibly large oscillations of rarefaction wave solutions near phase separation,and where the strength of the initial phase field could be arbitrarily large,we prove that the solution of the Cauchy problem exists for all time,and converges to the centered rarefaction wave solution of the corresponding standard two-phase Euler equation as the viscosity and the thickness of the interface tend to zero.The proof is mainly based on a scaling argument and a basic energy method.
基金supported by the National Natural Science Foundation of China (No.10871131)the Science and Technology Commission of Shanghai Municipality (No.075105118)+1 种基金the Shanghai Leading Academic Discipline Project (No.S30405)the Fund for E-institutes of Shanghai Universities(No.E03004)
文摘In this paper, we investigate the mixed spectral method using generalized Laguerre functions for exterior problems of fourth order partial differential equations. A mixed spectral scheme is provided for the stream function form of the Navier-Stokes equations outside a disc. Numerical results demonstrate the spectral accuracy in space.