Lotus tenuis forage yield has been quantified under defoliation conditions in pastures, grasslands and under dual-purpose production of both livestock forage and seeds. However, little is known about the effects of de...Lotus tenuis forage yield has been quantified under defoliation conditions in pastures, grasslands and under dual-purpose production of both livestock forage and seeds. However, little is known about the effects of defoliation management on L. tenuis flower and pod production and subsequent seed yield. Two field experiments were conducted to study the response of L. tenuis to defoliation at different flowering stages and intensities. In Experiment 1, crops were defoliated at the beginning of the flowering (DBF), mid-flowering (DMF) or full flowering (DFF). In Experiment 2, defoliation was in vegetative stage at low (LDI) or high (HDI) intensities. Defoliation in Experiment 1 neither affected plant cover nor the photosynthetically active radiation intercepted by the crop during pod production. There were less umbels with dehiscent (shattered) pods in the DFF treatment than in Control, DBF and DMF treatments. Flower peak occurred first in the Control, DBF and DMF treatments, and eight days later in DFF plots, however, seed yield was not affected (1324 ± 32.8 kg·ha<sup>-1</sup>). Defoliation intensity did not affect seed yield (962 ± 25.9 kg·ha<sup>-</sup><sup>1</sup>) because of self-compensation which increased harvest index in HDI (14.5% ± 0.6%) compared to the Control and LDI (12.0% ± 0.3%) treatments. Plant survival was not affected by defoliation treatments in any of the experiments. Flowering can be synchronized through defoliation. The blooming of large numbers of flowers in a short time was achieved, reducing the number of shattered pods. Compensatory responses through plant plasticity conferred L. tenuis the ability to overcome defoliation without affecting seed yield. Lotus tenuis defoliation as management tool will be considered in future researches because it is possible to harvest forage and to increase seed yield through a reduction of shattered pods.展开更多
The shape and color of rice leaves are important agronomic traits that directly influence the proportion of sunlight energy utilization and ultimately affect the yield and quality.A new mutant exhibiting stable inheri...The shape and color of rice leaves are important agronomic traits that directly influence the proportion of sunlight energy utilization and ultimately affect the yield and quality.A new mutant exhibiting stable inheritance was identified as derived from ethyl methane sulfonate(EMS)-treated restorer Jinhui 10,tentatively named as narrow and striped leaf 1(nsl1).The nsl1 displayed pale white leaves at the seeding stage and then white striped leaves in parallel to the main vein at the jointing stage.Meanwhile,its leaf blades are significantly narrower than the control group of Jinhui 10.The chloroplast structures of cells in the white striped area of the nsl1 mutant break down,and the photosynthetic pigments are significantly lower than that of the wild type.Moreover,fluorescence parameters,such as F0,F v/F m,U psII,qp,and ETR,in the nsl1 mutant are significantly lower than those of the wild type,and the photosynthetic efficiency is also significantly decreased.These changes in leaf color and shape,together with physiological changes in the nsl1,result in smaller plant height and a decrease in the most important agronomic traits,such as the number of grains per panicle,grain weight,etc.Genetic analysis shows that the narrow and striped traits of the nsl1 mutant are controlled by a single recessive nuclear gene,which is located between InDel 16and InDel 12 in chromosome 3.The physical distance is204 kb.So far,no similar genes of such leaf color and shape in this area have been reported.This study has laid a solid foundation for the gene cloning and function analysis of NSL1.展开更多
文摘Lotus tenuis forage yield has been quantified under defoliation conditions in pastures, grasslands and under dual-purpose production of both livestock forage and seeds. However, little is known about the effects of defoliation management on L. tenuis flower and pod production and subsequent seed yield. Two field experiments were conducted to study the response of L. tenuis to defoliation at different flowering stages and intensities. In Experiment 1, crops were defoliated at the beginning of the flowering (DBF), mid-flowering (DMF) or full flowering (DFF). In Experiment 2, defoliation was in vegetative stage at low (LDI) or high (HDI) intensities. Defoliation in Experiment 1 neither affected plant cover nor the photosynthetically active radiation intercepted by the crop during pod production. There were less umbels with dehiscent (shattered) pods in the DFF treatment than in Control, DBF and DMF treatments. Flower peak occurred first in the Control, DBF and DMF treatments, and eight days later in DFF plots, however, seed yield was not affected (1324 ± 32.8 kg·ha<sup>-1</sup>). Defoliation intensity did not affect seed yield (962 ± 25.9 kg·ha<sup>-</sup><sup>1</sup>) because of self-compensation which increased harvest index in HDI (14.5% ± 0.6%) compared to the Control and LDI (12.0% ± 0.3%) treatments. Plant survival was not affected by defoliation treatments in any of the experiments. Flowering can be synchronized through defoliation. The blooming of large numbers of flowers in a short time was achieved, reducing the number of shattered pods. Compensatory responses through plant plasticity conferred L. tenuis the ability to overcome defoliation without affecting seed yield. Lotus tenuis defoliation as management tool will be considered in future researches because it is possible to harvest forage and to increase seed yield through a reduction of shattered pods.
基金supported by Key Scientific Programs of Chongqing City(CSTC2012ggC 80002)
文摘The shape and color of rice leaves are important agronomic traits that directly influence the proportion of sunlight energy utilization and ultimately affect the yield and quality.A new mutant exhibiting stable inheritance was identified as derived from ethyl methane sulfonate(EMS)-treated restorer Jinhui 10,tentatively named as narrow and striped leaf 1(nsl1).The nsl1 displayed pale white leaves at the seeding stage and then white striped leaves in parallel to the main vein at the jointing stage.Meanwhile,its leaf blades are significantly narrower than the control group of Jinhui 10.The chloroplast structures of cells in the white striped area of the nsl1 mutant break down,and the photosynthetic pigments are significantly lower than that of the wild type.Moreover,fluorescence parameters,such as F0,F v/F m,U psII,qp,and ETR,in the nsl1 mutant are significantly lower than those of the wild type,and the photosynthetic efficiency is also significantly decreased.These changes in leaf color and shape,together with physiological changes in the nsl1,result in smaller plant height and a decrease in the most important agronomic traits,such as the number of grains per panicle,grain weight,etc.Genetic analysis shows that the narrow and striped traits of the nsl1 mutant are controlled by a single recessive nuclear gene,which is located between InDel 16and InDel 12 in chromosome 3.The physical distance is204 kb.So far,no similar genes of such leaf color and shape in this area have been reported.This study has laid a solid foundation for the gene cloning and function analysis of NSL1.