Correction to:Nano-Micro Letters(2025)17:123 https://doi.org/10.1007/s40820-025-01654-y Following publication of the original article[1],the authors reported that Dr.Mohamed Bououdina’s affiliation needed to be corre...Correction to:Nano-Micro Letters(2025)17:123 https://doi.org/10.1007/s40820-025-01654-y Following publication of the original article[1],the authors reported that Dr.Mohamed Bououdina’s affiliation needed to be corrected from 1 to 2.The correct author affiliation has been provided in this Correction and the original article[1]has been corrected.展开更多
A stacked Si/SiO_(x)/C composite anode material with carbon-coated structure was prepared by sol-gel method combined with carbothermal reduction using organic silicon.The results of X-ray diffractometry, scanning elec...A stacked Si/SiO_(x)/C composite anode material with carbon-coated structure was prepared by sol-gel method combined with carbothermal reduction using organic silicon.The results of X-ray diffractometry, scanning electron microscopy, and elemental analysis show that the Si/SiO_(x)/C material is a secondary particle with a porous micronanostructure, and the presence of nanometer silicon does not affect the carbothermal reduction and carbon coating.Electrochemical test results indicate that the specific capacity and first coulombic efficiency of SiO_(x)/C composite with nanometer silicon can be increased to 1 946.05 mAh/g and 76.49%,respectively.The reversible specific capacity of Si/SiO_(x)/C material blended with graphite is 749.69 mAh/g after 100 cycles at a current density of 0.1 C,and the capacity retention rate is up to 89.03%.Therefore, the composite has excellent electrochemical cycle stability.展开更多
A series of photocatalysts of un-doped, single-doped and co-doped nanometer titanium diox- ide (TiO2) have been successfully prepared by template method using Fe(NO3)3.9H2O, La(NO3)3.6H2O, and tetrabutyl titanat...A series of photocatalysts of un-doped, single-doped and co-doped nanometer titanium diox- ide (TiO2) have been successfully prepared by template method using Fe(NO3)3.9H2O, La(NO3)3.6H2O, and tetrabutyl titanate as precursors and glucan as template. Scanning electron microscopy, X-ray diffraction, and N2 adsorption-desorption measurement were employed to characterize the morphology, crystal structure and surface structure of the samples. The photo-absorbance of the obtained catalysts was measured by UV-Vis absorption spectroscopy, and the photocatalytic activities of the prepared samples under UV and visible light were estimated by measuring the degradation rate of methyl orange in an aqueous solution. The characterizations indicated that the prepared photocatalysts consisted of anatase phase and possessed high surface area of ca. 163-176 m2/g. It was shown that the Fe and La co-doped nano-TiO2 could be activated by visible light and could thus be used as an effective catalyst in photo-oxidation reactions. The synergistic effect of Fe and La co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of co-doped nano-TiO2 was also confirmed, the photocatalytic activity of codoped nano-TiO2 remained above 89.6% of the fresh sample after being used four times.展开更多
Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structu...Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structure. Annealed at 500 ℃, nanometer TiO 2 with a specific surface area of 101.39 m 2 ·g -1 and a grain size about 10 nm were obtained(pH=5); and with a specific surface area of 95.48 m 2 ·g -1 and a grain size about 30 nm were obtained(pH=10). The research indicated that crystal phase transformation of rutile at 750 ℃made great promotion in grain size growth.展开更多
In the electric field and layer-to-layer interaction energy, the law of split-level of high-level Stark effect of spherical nanometer system is explored as well as the frequency of spectrum, intensity and size effect ...In the electric field and layer-to-layer interaction energy, the law of split-level of high-level Stark effect of spherical nanometer system is explored as well as the frequency of spectrum, intensity and size effect of coefficient of spontaneous radiation. Taking three layers CdS/HgS spherical nanometer system as an example, the influence of the electric field and layer-to- layer interaction energy is explored on Stark effect and spectrum. The results show that in the Stark effect system, the energy level is split based on 1, 3, ..., (2n-1), when it is in the electric field only, similar to the hydrogen atoms; and in the electric field and layer-to-layer interaction, it is split based on 1, 4, ~ -., n2; with the quantum transition, the frequency of the spectrum decreases with the increasing size of the system; apart from a few spectral lines, the intensity of most spectral lines will decreased as the size increases; while the coefficient of spontaneous radiation will increase with the increasing size; the electric field will cause the changes of spectrum frequency; its spectrum frequency shift is proportional to the square of the electric field intensity; apart from a few spectral lines, the frequency shift of spectral lines that is caused by the electric field and layer-to-layer interaction will decrease as the size increases; the interaction will make the level of electronic energy level lower slightly (the order of magnitude is between 10-7-10-9 eV), the slightly increased spectrum intensity and the slightly increased value of coefficient of spontaneous radiation, but it will not influence the frequency of spectrum, intensity, and the trend that coefficient of spontaneous radiation changes with the size; when the size is smaller, the layer-to-layer interaction effect will be significant.展开更多
The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom...The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom and the micro vibration test bed. The result of stimulational experiment indicates that the isolation of vibration of this system is satisfactory. The design method of vibration can be used as the reference to ultra precision machine tool, super micro orientation machanism and so on.展开更多
The nanometer cobalt blue pigments were prepared by microemulsion method. Using dynamic light scattering(DLS) test method, the influences of water content on the size of liquid drop of microemulsion and the liquid dro...The nanometer cobalt blue pigments were prepared by microemulsion method. Using dynamic light scattering(DLS) test method, the influences of water content on the size of liquid drop of microemulsion and the liquid drop of microemulsion on the final diameter of nanometer particle were studied in the course of preparation. Accordingly, the method to control the diameter of nanometer particle by changing water content was established. The nanometer cobalt blue particles were confirmed by XRD and TEM. Color parameters of pigments were determined. The quantum size effect of the pigments was discussed.展开更多
Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structu...Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structure. Annealed at 500 ℃, nanometer TiO 2 with a specific surface area of 101.39 m 2 ·g -1 and a grain size about 10 nm were obtained(pH=5); and with a specific surface area of 95.48 m 2 ·g -1 and a grain size about 30 nm were obtained(pH=10). The research indicated that crystal phase transformation of rutile at 750 ℃made great promotion in grain size growth.展开更多
The quantum phenomenological model has been proposed to investigate the magnetic property of nanometer magnetic granular film in an applied magnetic field.The magnetoresistance of the granular films with two distinct ...The quantum phenomenological model has been proposed to investigate the magnetic property of nanometer magnetic granular film in an applied magnetic field.The magnetoresistance of the granular films with two distinct magnetic phases has been calculated by using Born approximation.The results show that the average scattering cross section of the magnetic cluster decreases with the increasing number n of the atom.The origin of the giant magnetoresistance comes from the spin dependent scattering between conduction electrons and magnetic granules and the field dependence of magnetoresistance and the quadratic relation of magnetoresistance on the rate of magnetic moment are in good agreement with the experiments reported.展开更多
The low-carbon magnesia-carbon (MgO-C) composites containing 3% (mass fraction, the same below) carbon were prepared by adding various types of carbon black (CB). The mechanical properties, oxidation resistance ...The low-carbon magnesia-carbon (MgO-C) composites containing 3% (mass fraction, the same below) carbon were prepared by adding various types of carbon black (CB). The mechanical properties, oxidation resistance at 1 100 ℃ in oxidizing atmosphere, and thermal shock resistance after 5 times dipping in 1 600 ℃molten steel of the low-carbon composite samples were investigated, compared with a commercial high-carbon MgO-C composite contai- ning carbon of 16 %. The results show that the mechanical properties, oxidation resistance and thermal shock resist- ance of the low-carbon samples are improved with the decrease of CB particle size. Thermal shock resistance of the low-carbon sample containing nanometer CB N220 is obviously better than that of other low-carbon samples, and rea- ches the level of the high-carbon samples.展开更多
Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate(nano-CaCO3) surface modified with γ-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl ...Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate(nano-CaCO3) surface modified with γ-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.展开更多
The effect of nanometer anatase TiO2 was investigated on the photocatalytic degradation of phenanthrene on soil surfaces under a variety of conditions. After being spiked with phenanthrene, soil samples loaded with di...The effect of nanometer anatase TiO2 was investigated on the photocatalytic degradation of phenanthrene on soil surfaces under a variety of conditions. After being spiked with phenanthrene, soil samples loaded with different amounts of TiO2 (0 wt.%, 1 wt.%, 2 wt.%, 3 wt.%, and 4 wt.%) were exposed to UV-light irradiation for 25 hr. The results indicated that the photocatalytic degradation of phenanthrene followed the pseudo first-order kinetics. TiO2 significantly accelerated the degradation of phenanthrene with the half-life reduced from 45.90 to 31.36 hr for TiO2 loading of 0 wt.% and 4 wt.%, respectively. In addition, the effects of H202, light intensity and humic acid on the degradation of phenanthrene were investigated. The degradation of phenanthrene increased with the concentration of H202, light intensity and the concentration of humic acids. It has been demonstrated that the photocatalytic method in the presence of nanometer anatase TiO2 was a very promising technology for the treatments of soil polluted with organic substances in the future.展开更多
Two kinds of TiO_2 nanometer thin films were prepared on stainless steel bythe reverse micellar and sol-gel methods, respectively. The calcined TiO_ 2 thin films werecharacterized by X-ray diffraction (XRD), atomic fo...Two kinds of TiO_2 nanometer thin films were prepared on stainless steel bythe reverse micellar and sol-gel methods, respectively. The calcined TiO_ 2 thin films werecharacterized by X-ray diffraction (XRD), atomic force microscopy (AFM), BET surface area and X-rayphotoelectron spectroscopy (XPS). Photocatalytic activity was evaluated by photocatalyticdecoloration of methyl orange aqueous solution. The results showed that the TiO_2 thin filmsprepared by reverse micellar method (designated as RM-TiO_2 films) showed higher photocatalyticactivity than those by sol-gel method (designated as SG-TiO_2 films). This is attributed to the factthat the former is composed of smaller monodispersed spherical particles with a size of about 15 nmand possesses higher surface areas.展开更多
The nanometer CeO2 powder was prepared by the method of microwave-assisted heating hydrolysis,and the nanometer CeO2-supported or ordinary CeO2-supported vanadia catalysts with different vanadium loadings(atomic ratio...The nanometer CeO2 powder was prepared by the method of microwave-assisted heating hydrolysis,and the nanometer CeO2-supported or ordinary CeO2-supported vanadia catalysts with different vanadium loadings(atomic ratios:100V/Ce=0.1,1,4,10,and 20) were prepared by an incipient-wetness impregnation method.Spectroscopic techniques(XRD,FT-IR,Raman and UV-Vis DRS) were utilized to characterize the structures of VOx/CeO2 catalysts.The results showed that the structures of CeO2-supported vanadium oxide catalysts de...展开更多
Nanometer powders of Al Fe alloy were prepared by gas evaporation. The formation regularity of the phases in the as prepared powders and the morphology of the particles were examined. The experimental results show tha...Nanometer powders of Al Fe alloy were prepared by gas evaporation. The formation regularity of the phases in the as prepared powders and the morphology of the particles were examined. The experimental results show that chemical composition of the master alloy is the key factor which controls the chemical composition of the compound phases in nanometer powders at given evaporating temperature, the compound phases with high Fe mole fraction will form with increasing of Fe content in master alloy. Only Al 13 Fe 4, FeAl 2 and Al 2Fe compound phases form in nanometer powders in present experiment, changing of the pressure of Ar can only alter relative amounts of the compound phases in the powders. Nanometer particles with inhomogeneous tissue were obtained, which is very different from that of pure Al and Fe nanometer particles. When mole fraction of Fe in particles increases, the inhomogeneity is enhanced. [展开更多
A new nanometer material, nanometer AlO(OH) loaded on the fiberglass with activated carbon fibers felt(ACF) as the carrier, was prepared by hydrolytic reaction for the removal of Cd(II) from aqueous solution usi...A new nanometer material, nanometer AlO(OH) loaded on the fiberglass with activated carbon fibers felt(ACF) as the carrier, was prepared by hydrolytic reaction for the removal of Cd(II) from aqueous solution using column adsorption experiment. As was confirmed by XRD determination, the hydrolysis production loaded on fiberglass was similar to the orthorhombic phase AlO(OH). SEM images showed that AlO(OH) particles were in the form of small aggregated clusters. The Thomas model was applied for estimating the kinetic parameters and the saturated adsorption ability of Cd(II) adsorption on the new adsorbent. The results showed that the maximum adsorption capacity of Cd(II) was 128.50 mg·g^-1 and 117.86 mg·g^-1 for the adsorbent mass of 0.3289 g and the adsorbent mass of 0.2867 g, respectively. The elution experiment result indicated that the adsorbed Cd ions was easily desorbed from the material with 0.1 mol·L^-1 HCl solution. Adsorption-desorption cycles showed the feasibility of repealed uses of the composited material. The adsorption capacities were influenced by pH and the initial Cd(II) concentration. The amount adsorbed was greatest at pH 6.5 and the initial Cd(II) concentration of 0.07 mg·L^-1, respectively. Nanometer AlO(OH) played a major role in the adsorption process, whereas the fiberglass and ACF were assistants in the process of removing Cd(II). In addition, the adsorption capacities for Cd(II) were obviously reduced from 128.50 mg·L^-1 to 64.28 mg·L^-1 when Pb ions were present because Pb ions took up more adsorption sites.展开更多
Nanometer crystal samarium borate with a particle size of 20~40?nm was prepared using replacing solvent drying technique. The wear resistance and load carrying capacity of 500SN base oil could be improved and the fri...Nanometer crystal samarium borate with a particle size of 20~40?nm was prepared using replacing solvent drying technique. The wear resistance and load carrying capacity of 500SN base oil could be improved and the friction coefficient could be decreased by the addition of nanometer samarium borate. But the dosage of samarium borate nanoparticles had to be controlled at a relatively low level, a higher concentration of nanoparticles was not of beneficial to the tribological performance of the oil. The optimal dosage of nanometer samarium borate is 1.0%. Tribochemical reactions took place in the tribological process, which resulted in the formation of deposition products including diboron trioxide and disamarium trioxide. Fe 2B and FeB were also found on the wear scar. The improvement of tribological properties of the oil comes from the formation of deposition layer and permeating layer. [展开更多
Bismuth-doped tin dioxide nanometer powders were prepared by co-precipitation method using SnCl4 and Bi(NO3)3 as raw materials. The effects of calcining temperature and doping ratio on the particle size, composition...Bismuth-doped tin dioxide nanometer powders were prepared by co-precipitation method using SnCl4 and Bi(NO3)3 as raw materials. The effects of calcining temperature and doping ratio on the particle size, composition, spectrum selectivity of bismuth-doped tin dioxide and the phase transition of Bi-Sn precursor at different temperatures were studied by means of X-ray diffraction, transmission electron microscopy, ultraviolet-visual-near infrared diffuse reflection spectrum and the thermogravimetric-differential scanning calorimetry. The results show that prepared bismuth-doped tin dioxide powders have excellent characteristics with a single-phase tetragonal structure, good dispersibility, good absorbency for ultraviolet ray and average particle size less than 10 nm. The optimum conditions for preparing bismuth-doped tin dioxide nanometer powders are as follows: calcining temperature of 600℃, ratio of bismuth-doped in a range of 0.10-0.30, and Bi-Sn precursor being dispersed by ultrasonic wave and refluxed azeotropic and distillated with mixture of n-butanol and benzene. The mechanism of phase transition of Bi-Sn precursor is that Bi 3+ enters Sn-vacancy and then forms Sn—O—Bi bond.展开更多
Nanometer α-Fe2O3 catalysts were prepared by hydrolyzation in high temperature. Three kinds of precipitators, NaOH, (NH4)2CO3 and urea were used to compare the effect in the process of hydrolyzation. Nanometer size...Nanometer α-Fe2O3 catalysts were prepared by hydrolyzation in high temperature. Three kinds of precipitators, NaOH, (NH4)2CO3 and urea were used to compare the effect in the process of hydrolyzation. Nanometer sizer, transmission electron microscopy (TEM) and X-ray diffraction (XRD) were employed to test the profiles and diameters of the product particles. The test results indicate that the production is nanometer α-Fe2O3 with narrow particle size distribution (PSD) and good dispersibility. The catalysts are mixed with ammonia perchlorate (AP) in 1.0 wt.%. And the composite particles of catalysts with AP are prepared using a new solvent-nonsolvent method. Differential thermal analyzer (DTA) is employed to analysis the thermal decomposition of the composite particles and pure AP sample. The results imply that the thermal decomposition curve peaks of the samples in which nanometer α-Fe2O3 catalysts are added appear comparatively more ahead than that of pure AP sample. Among these mixtures added nanometer material, the smaller the particle diameter of catalyst is, the more ahead the thermal decomposition curve peaks of AP appear. The high and low temperature thermal decomposition curve peaks of AP mixed with the catalyst deposed by urea are more ahead of 77.8?℃ and 9.7?℃ than that of pure AP, respectively. The mechanism of the catalyst deposed by urea with smaller diameter and the distinct catalysis of the particles on the thermal decomposition of AP are discussed.展开更多
The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalyti...The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalytic degradation effect of methyl orange in the presence of TiO_2 powder were much better than that without TiO_2, but the sonocatalytic activity of the nanometer anatase TiO_2 particle was obviously higher than that of ordinary anatase TiO_2 particle. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results showed that the best degradation ratio of methyl orange could be obtained when the experimental conditions were: initial concentration 15 mg/L, nanometer anatase TiO_2 adding amount 750 mg/L, ultrasonic frequency 40 kHz, output power 50 W, pH = 3.0 and temperature 40℃ within 150 min. In addition, the catalytic activity of reused nanometer anatase TiO_2 catalyst was also studied and found to decline gradually comparing with initial nanometer anatase TiO_2 catalyst. All experiments indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO_2 powder was an advisable choice for non- or low-transparent organic wastewaters.展开更多
文摘Correction to:Nano-Micro Letters(2025)17:123 https://doi.org/10.1007/s40820-025-01654-y Following publication of the original article[1],the authors reported that Dr.Mohamed Bououdina’s affiliation needed to be corrected from 1 to 2.The correct author affiliation has been provided in this Correction and the original article[1]has been corrected.
文摘A stacked Si/SiO_(x)/C composite anode material with carbon-coated structure was prepared by sol-gel method combined with carbothermal reduction using organic silicon.The results of X-ray diffractometry, scanning electron microscopy, and elemental analysis show that the Si/SiO_(x)/C material is a secondary particle with a porous micronanostructure, and the presence of nanometer silicon does not affect the carbothermal reduction and carbon coating.Electrochemical test results indicate that the specific capacity and first coulombic efficiency of SiO_(x)/C composite with nanometer silicon can be increased to 1 946.05 mAh/g and 76.49%,respectively.The reversible specific capacity of Si/SiO_(x)/C material blended with graphite is 749.69 mAh/g after 100 cycles at a current density of 0.1 C,and the capacity retention rate is up to 89.03%.Therefore, the composite has excellent electrochemical cycle stability.
文摘A series of photocatalysts of un-doped, single-doped and co-doped nanometer titanium diox- ide (TiO2) have been successfully prepared by template method using Fe(NO3)3.9H2O, La(NO3)3.6H2O, and tetrabutyl titanate as precursors and glucan as template. Scanning electron microscopy, X-ray diffraction, and N2 adsorption-desorption measurement were employed to characterize the morphology, crystal structure and surface structure of the samples. The photo-absorbance of the obtained catalysts was measured by UV-Vis absorption spectroscopy, and the photocatalytic activities of the prepared samples under UV and visible light were estimated by measuring the degradation rate of methyl orange in an aqueous solution. The characterizations indicated that the prepared photocatalysts consisted of anatase phase and possessed high surface area of ca. 163-176 m2/g. It was shown that the Fe and La co-doped nano-TiO2 could be activated by visible light and could thus be used as an effective catalyst in photo-oxidation reactions. The synergistic effect of Fe and La co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of co-doped nano-TiO2 was also confirmed, the photocatalytic activity of codoped nano-TiO2 remained above 89.6% of the fresh sample after being used four times.
文摘Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structure. Annealed at 500 ℃, nanometer TiO 2 with a specific surface area of 101.39 m 2 ·g -1 and a grain size about 10 nm were obtained(pH=5); and with a specific surface area of 95.48 m 2 ·g -1 and a grain size about 30 nm were obtained(pH=10). The research indicated that crystal phase transformation of rutile at 750 ℃made great promotion in grain size growth.
文摘In the electric field and layer-to-layer interaction energy, the law of split-level of high-level Stark effect of spherical nanometer system is explored as well as the frequency of spectrum, intensity and size effect of coefficient of spontaneous radiation. Taking three layers CdS/HgS spherical nanometer system as an example, the influence of the electric field and layer-to- layer interaction energy is explored on Stark effect and spectrum. The results show that in the Stark effect system, the energy level is split based on 1, 3, ..., (2n-1), when it is in the electric field only, similar to the hydrogen atoms; and in the electric field and layer-to-layer interaction, it is split based on 1, 4, ~ -., n2; with the quantum transition, the frequency of the spectrum decreases with the increasing size of the system; apart from a few spectral lines, the intensity of most spectral lines will decreased as the size increases; while the coefficient of spontaneous radiation will increase with the increasing size; the electric field will cause the changes of spectrum frequency; its spectrum frequency shift is proportional to the square of the electric field intensity; apart from a few spectral lines, the frequency shift of spectral lines that is caused by the electric field and layer-to-layer interaction will decrease as the size increases; the interaction will make the level of electronic energy level lower slightly (the order of magnitude is between 10-7-10-9 eV), the slightly increased spectrum intensity and the slightly increased value of coefficient of spontaneous radiation, but it will not influence the frequency of spectrum, intensity, and the trend that coefficient of spontaneous radiation changes with the size; when the size is smaller, the layer-to-layer interaction effect will be significant.
文摘The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom and the micro vibration test bed. The result of stimulational experiment indicates that the isolation of vibration of this system is satisfactory. The design method of vibration can be used as the reference to ultra precision machine tool, super micro orientation machanism and so on.
文摘The nanometer cobalt blue pigments were prepared by microemulsion method. Using dynamic light scattering(DLS) test method, the influences of water content on the size of liquid drop of microemulsion and the liquid drop of microemulsion on the final diameter of nanometer particle were studied in the course of preparation. Accordingly, the method to control the diameter of nanometer particle by changing water content was established. The nanometer cobalt blue particles were confirmed by XRD and TEM. Color parameters of pigments were determined. The quantum size effect of the pigments was discussed.
文摘Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structure. Annealed at 500 ℃, nanometer TiO 2 with a specific surface area of 101.39 m 2 ·g -1 and a grain size about 10 nm were obtained(pH=5); and with a specific surface area of 95.48 m 2 ·g -1 and a grain size about 30 nm were obtained(pH=10). The research indicated that crystal phase transformation of rutile at 750 ℃made great promotion in grain size growth.
基金Supported by National Natural Science Foundation of China!(No.194 7710 5)
文摘The quantum phenomenological model has been proposed to investigate the magnetic property of nanometer magnetic granular film in an applied magnetic field.The magnetoresistance of the granular films with two distinct magnetic phases has been calculated by using Born approximation.The results show that the average scattering cross section of the magnetic cluster decreases with the increasing number n of the atom.The origin of the giant magnetoresistance comes from the spin dependent scattering between conduction electrons and magnetic granules and the field dependence of magnetoresistance and the quadratic relation of magnetoresistance on the rate of magnetic moment are in good agreement with the experiments reported.
基金Item Sponsored by National Natural Science Foundation of China(50572032)
文摘The low-carbon magnesia-carbon (MgO-C) composites containing 3% (mass fraction, the same below) carbon were prepared by adding various types of carbon black (CB). The mechanical properties, oxidation resistance at 1 100 ℃ in oxidizing atmosphere, and thermal shock resistance after 5 times dipping in 1 600 ℃molten steel of the low-carbon composite samples were investigated, compared with a commercial high-carbon MgO-C composite contai- ning carbon of 16 %. The results show that the mechanical properties, oxidation resistance and thermal shock resist- ance of the low-carbon samples are improved with the decrease of CB particle size. Thermal shock resistance of the low-carbon sample containing nanometer CB N220 is obviously better than that of other low-carbon samples, and rea- ches the level of the high-carbon samples.
文摘Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate(nano-CaCO3) surface modified with γ-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.
基金supported by the Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering (No. KLIEEE-09-04)the Liaoning Doctoral Funds (No. 20111076)
文摘The effect of nanometer anatase TiO2 was investigated on the photocatalytic degradation of phenanthrene on soil surfaces under a variety of conditions. After being spiked with phenanthrene, soil samples loaded with different amounts of TiO2 (0 wt.%, 1 wt.%, 2 wt.%, 3 wt.%, and 4 wt.%) were exposed to UV-light irradiation for 25 hr. The results indicated that the photocatalytic degradation of phenanthrene followed the pseudo first-order kinetics. TiO2 significantly accelerated the degradation of phenanthrene with the half-life reduced from 45.90 to 31.36 hr for TiO2 loading of 0 wt.% and 4 wt.%, respectively. In addition, the effects of H202, light intensity and humic acid on the degradation of phenanthrene were investigated. The degradation of phenanthrene increased with the concentration of H202, light intensity and the concentration of humic acids. It has been demonstrated that the photocatalytic method in the presence of nanometer anatase TiO2 was a very promising technology for the treatments of soil polluted with organic substances in the future.
基金This project is financially supported by the National Natural Science Foundation of China (No.s 50272049, 50072016) The Excellent Young Teachers Program of MOE, China (No. (2002)350)
文摘Two kinds of TiO_2 nanometer thin films were prepared on stainless steel bythe reverse micellar and sol-gel methods, respectively. The calcined TiO_ 2 thin films werecharacterized by X-ray diffraction (XRD), atomic force microscopy (AFM), BET surface area and X-rayphotoelectron spectroscopy (XPS). Photocatalytic activity was evaluated by photocatalyticdecoloration of methyl orange aqueous solution. The results showed that the TiO_2 thin filmsprepared by reverse micellar method (designated as RM-TiO_2 films) showed higher photocatalyticactivity than those by sol-gel method (designated as SG-TiO_2 films). This is attributed to the factthat the former is composed of smaller monodispersed spherical particles with a size of about 15 nmand possesses higher surface areas.
基金supported by the National Natural Science Foundation of China (20803093,20833011,20525621)the Doctor Select Foundation for the University of State Education Ministry (200804251016)+1 种基金the Beijing Outstanding Ph.D.Thesis Foundation (YB 20091141401)the Hi-Tech Research and Development Program (863) of China (SQ2009AA06Z3488052)
文摘The nanometer CeO2 powder was prepared by the method of microwave-assisted heating hydrolysis,and the nanometer CeO2-supported or ordinary CeO2-supported vanadia catalysts with different vanadium loadings(atomic ratios:100V/Ce=0.1,1,4,10,and 20) were prepared by an incipient-wetness impregnation method.Spectroscopic techniques(XRD,FT-IR,Raman and UV-Vis DRS) were utilized to characterize the structures of VOx/CeO2 catalysts.The results showed that the structures of CeO2-supported vanadium oxide catalysts de...
文摘Nanometer powders of Al Fe alloy were prepared by gas evaporation. The formation regularity of the phases in the as prepared powders and the morphology of the particles were examined. The experimental results show that chemical composition of the master alloy is the key factor which controls the chemical composition of the compound phases in nanometer powders at given evaporating temperature, the compound phases with high Fe mole fraction will form with increasing of Fe content in master alloy. Only Al 13 Fe 4, FeAl 2 and Al 2Fe compound phases form in nanometer powders in present experiment, changing of the pressure of Ar can only alter relative amounts of the compound phases in the powders. Nanometer particles with inhomogeneous tissue were obtained, which is very different from that of pure Al and Fe nanometer particles. When mole fraction of Fe in particles increases, the inhomogeneity is enhanced. [
文摘A new nanometer material, nanometer AlO(OH) loaded on the fiberglass with activated carbon fibers felt(ACF) as the carrier, was prepared by hydrolytic reaction for the removal of Cd(II) from aqueous solution using column adsorption experiment. As was confirmed by XRD determination, the hydrolysis production loaded on fiberglass was similar to the orthorhombic phase AlO(OH). SEM images showed that AlO(OH) particles were in the form of small aggregated clusters. The Thomas model was applied for estimating the kinetic parameters and the saturated adsorption ability of Cd(II) adsorption on the new adsorbent. The results showed that the maximum adsorption capacity of Cd(II) was 128.50 mg·g^-1 and 117.86 mg·g^-1 for the adsorbent mass of 0.3289 g and the adsorbent mass of 0.2867 g, respectively. The elution experiment result indicated that the adsorbed Cd ions was easily desorbed from the material with 0.1 mol·L^-1 HCl solution. Adsorption-desorption cycles showed the feasibility of repealed uses of the composited material. The adsorption capacities were influenced by pH and the initial Cd(II) concentration. The amount adsorbed was greatest at pH 6.5 and the initial Cd(II) concentration of 0.07 mg·L^-1, respectively. Nanometer AlO(OH) played a major role in the adsorption process, whereas the fiberglass and ACF were assistants in the process of removing Cd(II). In addition, the adsorption capacities for Cd(II) were obviously reduced from 128.50 mg·L^-1 to 64.28 mg·L^-1 when Pb ions were present because Pb ions took up more adsorption sites.
文摘Nanometer crystal samarium borate with a particle size of 20~40?nm was prepared using replacing solvent drying technique. The wear resistance and load carrying capacity of 500SN base oil could be improved and the friction coefficient could be decreased by the addition of nanometer samarium borate. But the dosage of samarium borate nanoparticles had to be controlled at a relatively low level, a higher concentration of nanoparticles was not of beneficial to the tribological performance of the oil. The optimal dosage of nanometer samarium borate is 1.0%. Tribochemical reactions took place in the tribological process, which resulted in the formation of deposition products including diboron trioxide and disamarium trioxide. Fe 2B and FeB were also found on the wear scar. The improvement of tribological properties of the oil comes from the formation of deposition layer and permeating layer. [
基金Project(GC200603) supported by the Open Fund of Guangdong Provincial Key Laboratory for Green Chemicals projectsupported by the Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education of China
文摘Bismuth-doped tin dioxide nanometer powders were prepared by co-precipitation method using SnCl4 and Bi(NO3)3 as raw materials. The effects of calcining temperature and doping ratio on the particle size, composition, spectrum selectivity of bismuth-doped tin dioxide and the phase transition of Bi-Sn precursor at different temperatures were studied by means of X-ray diffraction, transmission electron microscopy, ultraviolet-visual-near infrared diffuse reflection spectrum and the thermogravimetric-differential scanning calorimetry. The results show that prepared bismuth-doped tin dioxide powders have excellent characteristics with a single-phase tetragonal structure, good dispersibility, good absorbency for ultraviolet ray and average particle size less than 10 nm. The optimum conditions for preparing bismuth-doped tin dioxide nanometer powders are as follows: calcining temperature of 600℃, ratio of bismuth-doped in a range of 0.10-0.30, and Bi-Sn precursor being dispersed by ultrasonic wave and refluxed azeotropic and distillated with mixture of n-butanol and benzene. The mechanism of phase transition of Bi-Sn precursor is that Bi 3+ enters Sn-vacancy and then forms Sn—O—Bi bond.
文摘Nanometer α-Fe2O3 catalysts were prepared by hydrolyzation in high temperature. Three kinds of precipitators, NaOH, (NH4)2CO3 and urea were used to compare the effect in the process of hydrolyzation. Nanometer sizer, transmission electron microscopy (TEM) and X-ray diffraction (XRD) were employed to test the profiles and diameters of the product particles. The test results indicate that the production is nanometer α-Fe2O3 with narrow particle size distribution (PSD) and good dispersibility. The catalysts are mixed with ammonia perchlorate (AP) in 1.0 wt.%. And the composite particles of catalysts with AP are prepared using a new solvent-nonsolvent method. Differential thermal analyzer (DTA) is employed to analysis the thermal decomposition of the composite particles and pure AP sample. The results imply that the thermal decomposition curve peaks of the samples in which nanometer α-Fe2O3 catalysts are added appear comparatively more ahead than that of pure AP sample. Among these mixtures added nanometer material, the smaller the particle diameter of catalyst is, the more ahead the thermal decomposition curve peaks of AP appear. The high and low temperature thermal decomposition curve peaks of AP mixed with the catalyst deposed by urea are more ahead of 77.8?℃ and 9.7?℃ than that of pure AP, respectively. The mechanism of the catalyst deposed by urea with smaller diameter and the distinct catalysis of the particles on the thermal decomposition of AP are discussed.
基金Foundation item: The National Natural Science Foundation of China(No. 20371023)
文摘The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalytic degradation effect of methyl orange in the presence of TiO_2 powder were much better than that without TiO_2, but the sonocatalytic activity of the nanometer anatase TiO_2 particle was obviously higher than that of ordinary anatase TiO_2 particle. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results showed that the best degradation ratio of methyl orange could be obtained when the experimental conditions were: initial concentration 15 mg/L, nanometer anatase TiO_2 adding amount 750 mg/L, ultrasonic frequency 40 kHz, output power 50 W, pH = 3.0 and temperature 40℃ within 150 min. In addition, the catalytic activity of reused nanometer anatase TiO_2 catalyst was also studied and found to decline gradually comparing with initial nanometer anatase TiO_2 catalyst. All experiments indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO_2 powder was an advisable choice for non- or low-transparent organic wastewaters.