This study aims to determine the principal electrochemical characteristics of the electrodeposition of cerium metal from molten fluoride systems.The cathodic process of Ce3+ ions in LiF-NaF and LiF-NaF-CaF2 molten sal...This study aims to determine the principal electrochemical characteristics of the electrodeposition of cerium metal from molten fluoride systems.The cathodic process of Ce3+ ions in LiF-NaF and LiF-NaF-CaF2 molten salts was studied using electrochemical techniques as steady state and cyclic voltammetry methods.The decomposition potential(Ed) and the overvoltage(η) were determined for NaCeF4 using current-potential curves under galvanostatic conditions.The Ed was found to be 2.025 V in LiF-NaF and 2.045 V in...展开更多
This work continued our general research program on obtaining metallic cerium by electrodeposition from NaCeF4 dis-solved in different molten fluorides. The structure of NaCeF4 (cubic or hexagonal depending on the wa...This work continued our general research program on obtaining metallic cerium by electrodeposition from NaCeF4 dis-solved in different molten fluorides. The structure of NaCeF4 (cubic or hexagonal depending on the way of preparation) was estab-lished by DTA analysis, IR spectra and X-ray diffraction. The heat capacity (Cp) of NaCeF4 was measured by differential scanning calorimetry in the temperature range of 300-1093 K using the“step-method”. The Cp was fitted by an equation with a satisfactory re-sult. Heat capacity was compared with that calculated from the Neumann-Kopp rule (NKR) and the deviations observed were consis-tent with the stability of the NaCeF4 compound.展开更多
文摘This study aims to determine the principal electrochemical characteristics of the electrodeposition of cerium metal from molten fluoride systems.The cathodic process of Ce3+ ions in LiF-NaF and LiF-NaF-CaF2 molten salts was studied using electrochemical techniques as steady state and cyclic voltammetry methods.The decomposition potential(Ed) and the overvoltage(η) were determined for NaCeF4 using current-potential curves under galvanostatic conditions.The Ed was found to be 2.025 V in LiF-NaF and 2.045 V in...
基金support from North Atlantic Treaty Organization (NATO) under "Fellowship Grant/004- 005/2002"
文摘This work continued our general research program on obtaining metallic cerium by electrodeposition from NaCeF4 dis-solved in different molten fluorides. The structure of NaCeF4 (cubic or hexagonal depending on the way of preparation) was estab-lished by DTA analysis, IR spectra and X-ray diffraction. The heat capacity (Cp) of NaCeF4 was measured by differential scanning calorimetry in the temperature range of 300-1093 K using the“step-method”. The Cp was fitted by an equation with a satisfactory re-sult. Heat capacity was compared with that calculated from the Neumann-Kopp rule (NKR) and the deviations observed were consis-tent with the stability of the NaCeF4 compound.