Automatic guided vehicles(AGVs)are extensively employed in manufacturing workshops for their high degree of automation and flexibility.This paper investigates a limited AGV scheduling problem(LAGVSP)in matrix manufact...Automatic guided vehicles(AGVs)are extensively employed in manufacturing workshops for their high degree of automation and flexibility.This paper investigates a limited AGV scheduling problem(LAGVSP)in matrix manufacturing workshops with undirected material flow,aiming to minimize both total task delay time and total task completion time.To address this LAGVSP,a mixed-integer linear programming model is built,and a nondominated sorting genetic algorithm II based on dual population co-evolution(NSGA-IIDPC)is proposed.In NSGA-IIDPC,a single population is divided into a common population and an elite population,and they adopt different evolutionary strategies during the evolution process.The dual population co-evolution mechanism is designed to accelerate the convergence of the non-dominated solution set in the population to the Pareto front through information exchange and competition between the two populations.In addition,to enhance the quality of initial population,a minimum cost function strategy based on load balancing is adopted.Multiple local search operators based on ideal point are proposed to find a better local solution.To improve the global exploration ability of the algorithm,a dual population restart mechanism is adopted.Experimental tests and comparisons with other algorithms are conducted to demonstrate the effectiveness of NSGA-IIDPC in solving the LAGVSP.展开更多
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion...Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.展开更多
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting...Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach.展开更多
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl...This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.展开更多
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from...Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.展开更多
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an...Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.展开更多
In order to maintain a uniform distribution of pareto-front solutions, a modified NSGA-II algorithm coupled with a dynamic crowding distance(DCD) method is proposed for the multi-objective optimization of a mixed-flow...In order to maintain a uniform distribution of pareto-front solutions, a modified NSGA-II algorithm coupled with a dynamic crowding distance(DCD) method is proposed for the multi-objective optimization of a mixed-flow pump impeller. With the pump meridional section fixed, ten variables along the shroud and hub are selected to control the blade load by using a three-dimensional inverse design method. Hydraulic efficiency, along with impeller head, is applied as an optimization objective; and a radial basis neural network(RBNN) is adopted to approximate the objective function with 82 training samples. Local sensitivity analysis shows that decision variables have different impacts on the optimization objectives. Instead of randomly selecting one solution to implement, a technique for ordering preferences by similarity to ideal solution(TOPSIS) is introduced to select the best compromise solution(BCS) from pareto-front sets. The proposed method is applied to optimize the baseline model, i.e. a mixed- flow waterjet pump whose specific speed is 508 min?1?m3s?1?m. The performance of the waterjet pump was experimentally tested. Compared with the baseline model, the optimized impeller has a better hydraulic efficiency of 92% as well as a higher impeller head at the design operation point. Furthermore, the off-design performance is improved with a wider highefficiency operation range. After optimization, velocity gradients on the suction surface are smoother and flow separations are eliminated at the blade inlet part. Thus, the authors believe the proposed method is helpful for optimizing the mixed-flow pumps.展开更多
Retrofitting a historic building under different national goals involves multiple objectives,constraints,and numerous potential measures and packages,therefore it is time-consuming and challenging during the early des...Retrofitting a historic building under different national goals involves multiple objectives,constraints,and numerous potential measures and packages,therefore it is time-consuming and challenging during the early design stage.This study introduces a systematic retrofitting approach that incorporates standard measures for the building envelope(walls,windows,roof),as well as the heating,cooling,and lighting systems.Three retrofit objectives are delineated based on prevailing Chinese standards.The retrofit measures function as genes to optimize energy-savings,carbon emissions,and net present value(NPV)by employing a log-additive decomposition approach through energy simulation techniques and NSGA-II,yielding 185,163,and 8 solutions.Subsequently,a weighted sum method is proposed to derive optimal solutions across multiple scenarios.The framework is applied to a courtyard building in Nanjing,China,and the outcomes of the implementation are scrutinized to ascertain the optimal retrofit package under various scenarios.Through this retrofit,energy consumption can be diminished by up to 63.62%,resulting in an NPV growth of 151.84%,and maximum rate of 60.48%carbon reduction.These three result values not only indicate that the optimal values are achieved in these three aspects of energy saving,carbon reduction and economy,but also show the possibility of possible equilibrium in this multi-objective optimization problem.The framework proposed in this study effectively addresses the multi-objective optimization challenge in building renovation by employing a reliable optimization algorithm with a computationally efficient reduced-order model.It provides valuable insights and recommendations for optimizing energy retrofit strategies and meeting various performance objectives.展开更多
Reservoir simulation is known as perhaps the most widely used,accurate,and reliable method for field development in the petroleum industry.An integral part of a reliable reservoir simulation process is to consider rob...Reservoir simulation is known as perhaps the most widely used,accurate,and reliable method for field development in the petroleum industry.An integral part of a reliable reservoir simulation process is to consider robust and rigorous tuned EOS models.Traditionally,EOS models are tuned iteratively through arduous workflows against experimental PVT data.However,this comes with a number of drawbacks such as forcingly using weight factors,which upon alteration adversely affects the optimization process.The objective of the current work is thus to introduce an auto-tune PVT matching tool using NSGA-II multi-objective optimization.In order to illustrate the robustness of the presented technique,three different PVT samples are used,including two black-oil and one gas condensate sample.We utilize PengRobinson EOS during all the manual and auto-tuning processes.Comparison of auto-tuned EOS-generated results with those of experimental and computed statistical error values for these samples clearly show that the proposed method is robust.In addition,the proposed method,contrary to the manual matching process,provides the engineer with several matched solutions,which allows them to select a match based on the engineering background to be best amenable to the problem at hand.In addition,the proposed technique is fast,and can output several solutions within less time compared to the traditional manual matching method.展开更多
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr...Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th...Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.展开更多
随着我国电商行业的迅猛发展以及国家对相关减排政策的大力倡导与推行,针对物流企业使用电动冷藏车开展生鲜冷链运输的具体情境,构建了一个能够同时考虑企业在配送过程中所产生的综合运输成本、碳排放量及配送水平的多目标优化模型。在N...随着我国电商行业的迅猛发展以及国家对相关减排政策的大力倡导与推行,针对物流企业使用电动冷藏车开展生鲜冷链运输的具体情境,构建了一个能够同时考虑企业在配送过程中所产生的综合运输成本、碳排放量及配送水平的多目标优化模型。在NSGA-II算法中引入了佳点集生成初始种群、自适应交叉变异概率和模拟退火辅助局部搜索的改进策略。实验结果显示,改进后的算法有效克服了传统NSGA-II算法对初始种群敏感、局部搜索能力有限、收敛速度较慢等问题,获得了更优质的Pareto解集,从而验证了该改进算法的有效性。With the rapid development of China’s e-commerce industry and the country’s strong advocacy and implementation of relevant emission reduction policies, a multi-objective optimization model is constructed to consider the comprehensive transportation cost, carbon emissions and distribution level generated by enterprises in the distribution process, aiming at the specific situation of logistics enterprises using electric refrigerated trucks to carry out fresh cold chain transportation. In NSGA-II algorithm, the improved strategies of generating initial population with good point set, adaptive cross-mutation probability and simulated annealing assisted local search are introduced. Experimental results show that the improved algorithm effectively overcomes the problems of the traditional NSGA-II algorithm, such as sensitivity to the initial population, limited local search ability and slow convergence speed, and obtains a better Pareto solution set, thus verifying the effectiveness of the improved algorithm.展开更多
基金supported by the National Natural Science Foundation of China(No.62076095)National Key Research and Development Program(No.2022YFB4602104).
文摘Automatic guided vehicles(AGVs)are extensively employed in manufacturing workshops for their high degree of automation and flexibility.This paper investigates a limited AGV scheduling problem(LAGVSP)in matrix manufacturing workshops with undirected material flow,aiming to minimize both total task delay time and total task completion time.To address this LAGVSP,a mixed-integer linear programming model is built,and a nondominated sorting genetic algorithm II based on dual population co-evolution(NSGA-IIDPC)is proposed.In NSGA-IIDPC,a single population is divided into a common population and an elite population,and they adopt different evolutionary strategies during the evolution process.The dual population co-evolution mechanism is designed to accelerate the convergence of the non-dominated solution set in the population to the Pareto front through information exchange and competition between the two populations.In addition,to enhance the quality of initial population,a minimum cost function strategy based on load balancing is adopted.Multiple local search operators based on ideal point are proposed to find a better local solution.To improve the global exploration ability of the algorithm,a dual population restart mechanism is adopted.Experimental tests and comparisons with other algorithms are conducted to demonstrate the effectiveness of NSGA-IIDPC in solving the LAGVSP.
文摘Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.
基金National Key Research and Development Program of China,No.2023YFC3006704National Natural Science Foundation of China,No.42171047CAS-CSIRO Partnership Joint Project of 2024,No.177GJHZ2023097MI。
文摘Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach.
基金supported by the Research Project of China Southern Power Grid(No.056200KK52222031).
文摘This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.
基金supported by the Major Science and Technology Programs in Henan Province(No.241100210100)Henan Provincial Science and Technology Research Project(No.252102211085,No.252102211105)+3 种基金Endogenous Security Cloud Network Convergence R&D Center(No.602431011PQ1)The Special Project for Research and Development in Key Areas of Guangdong Province(No.2021ZDZX1098)The Stabilization Support Program of Science,Technology and Innovation Commission of Shenzhen Municipality(No.20231128083944001)The Key scientific research projects of Henan higher education institutions(No.24A520042).
文摘Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.
基金the National Key Research and Development Program of China(Grant No.2022YFF0711400)which provided valuable financial support and resources for my research and made it possible for me to deeply explore the unknown mysteries in the field of lunar geologythe National Space Science Data Center Youth Open Project(Grant No.NSSDC2302001),which has not only facilitated the smooth progress of my research,but has also built a platform for me to communicate and cooperate with experts in the field.
文摘Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.
基金supported by the National Natural Science Foundation of China(Grant Nos.5137610051306018+4 种基金51206087and 51179091)the National Key Technology Research and Development Program(Grant No.2011BAF03B01)State Key Laboratory for Hydroscience and Engineering(Grant Nos.2014-KY-05 and 2015-E-03)Laboratory of Science and Technology on Waterjet Propulsion
文摘In order to maintain a uniform distribution of pareto-front solutions, a modified NSGA-II algorithm coupled with a dynamic crowding distance(DCD) method is proposed for the multi-objective optimization of a mixed-flow pump impeller. With the pump meridional section fixed, ten variables along the shroud and hub are selected to control the blade load by using a three-dimensional inverse design method. Hydraulic efficiency, along with impeller head, is applied as an optimization objective; and a radial basis neural network(RBNN) is adopted to approximate the objective function with 82 training samples. Local sensitivity analysis shows that decision variables have different impacts on the optimization objectives. Instead of randomly selecting one solution to implement, a technique for ordering preferences by similarity to ideal solution(TOPSIS) is introduced to select the best compromise solution(BCS) from pareto-front sets. The proposed method is applied to optimize the baseline model, i.e. a mixed- flow waterjet pump whose specific speed is 508 min?1?m3s?1?m. The performance of the waterjet pump was experimentally tested. Compared with the baseline model, the optimized impeller has a better hydraulic efficiency of 92% as well as a higher impeller head at the design operation point. Furthermore, the off-design performance is improved with a wider highefficiency operation range. After optimization, velocity gradients on the suction surface are smoother and flow separations are eliminated at the blade inlet part. Thus, the authors believe the proposed method is helpful for optimizing the mixed-flow pumps.
基金the National Key R&D Program-Strategic Scientific and Technological Innovation Cooperation(#2022YFE0208600)National Science and Foundation of China(#52208011)+1 种基金the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone(HZQB-KCZYB-2020083)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_0034).
文摘Retrofitting a historic building under different national goals involves multiple objectives,constraints,and numerous potential measures and packages,therefore it is time-consuming and challenging during the early design stage.This study introduces a systematic retrofitting approach that incorporates standard measures for the building envelope(walls,windows,roof),as well as the heating,cooling,and lighting systems.Three retrofit objectives are delineated based on prevailing Chinese standards.The retrofit measures function as genes to optimize energy-savings,carbon emissions,and net present value(NPV)by employing a log-additive decomposition approach through energy simulation techniques and NSGA-II,yielding 185,163,and 8 solutions.Subsequently,a weighted sum method is proposed to derive optimal solutions across multiple scenarios.The framework is applied to a courtyard building in Nanjing,China,and the outcomes of the implementation are scrutinized to ascertain the optimal retrofit package under various scenarios.Through this retrofit,energy consumption can be diminished by up to 63.62%,resulting in an NPV growth of 151.84%,and maximum rate of 60.48%carbon reduction.These three result values not only indicate that the optimal values are achieved in these three aspects of energy saving,carbon reduction and economy,but also show the possibility of possible equilibrium in this multi-objective optimization problem.The framework proposed in this study effectively addresses the multi-objective optimization challenge in building renovation by employing a reliable optimization algorithm with a computationally efficient reduced-order model.It provides valuable insights and recommendations for optimizing energy retrofit strategies and meeting various performance objectives.
文摘Reservoir simulation is known as perhaps the most widely used,accurate,and reliable method for field development in the petroleum industry.An integral part of a reliable reservoir simulation process is to consider robust and rigorous tuned EOS models.Traditionally,EOS models are tuned iteratively through arduous workflows against experimental PVT data.However,this comes with a number of drawbacks such as forcingly using weight factors,which upon alteration adversely affects the optimization process.The objective of the current work is thus to introduce an auto-tune PVT matching tool using NSGA-II multi-objective optimization.In order to illustrate the robustness of the presented technique,three different PVT samples are used,including two black-oil and one gas condensate sample.We utilize PengRobinson EOS during all the manual and auto-tuning processes.Comparison of auto-tuned EOS-generated results with those of experimental and computed statistical error values for these samples clearly show that the proposed method is robust.In addition,the proposed method,contrary to the manual matching process,provides the engineer with several matched solutions,which allows them to select a match based on the engineering background to be best amenable to the problem at hand.In addition,the proposed technique is fast,and can output several solutions within less time compared to the traditional manual matching method.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant(No.51677058).
文摘Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
基金supported by Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443)National Natural Science Foundation of China(62263014,52207105)+1 种基金Yunnan Lancang-Mekong International Electric Power Technology Joint Laboratory(202203AP140001)Major Science and Technology Projects in Yunnan Province(202402AG050006).
文摘Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.
文摘随着我国电商行业的迅猛发展以及国家对相关减排政策的大力倡导与推行,针对物流企业使用电动冷藏车开展生鲜冷链运输的具体情境,构建了一个能够同时考虑企业在配送过程中所产生的综合运输成本、碳排放量及配送水平的多目标优化模型。在NSGA-II算法中引入了佳点集生成初始种群、自适应交叉变异概率和模拟退火辅助局部搜索的改进策略。实验结果显示,改进后的算法有效克服了传统NSGA-II算法对初始种群敏感、局部搜索能力有限、收敛速度较慢等问题,获得了更优质的Pareto解集,从而验证了该改进算法的有效性。With the rapid development of China’s e-commerce industry and the country’s strong advocacy and implementation of relevant emission reduction policies, a multi-objective optimization model is constructed to consider the comprehensive transportation cost, carbon emissions and distribution level generated by enterprises in the distribution process, aiming at the specific situation of logistics enterprises using electric refrigerated trucks to carry out fresh cold chain transportation. In NSGA-II algorithm, the improved strategies of generating initial population with good point set, adaptive cross-mutation probability and simulated annealing assisted local search are introduced. Experimental results show that the improved algorithm effectively overcomes the problems of the traditional NSGA-II algorithm, such as sensitivity to the initial population, limited local search ability and slow convergence speed, and obtains a better Pareto solution set, thus verifying the effectiveness of the improved algorithm.