As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires com...As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.展开更多
The single-layer Ti_(3)C_(2)T_(x)/MXene has become a special electromagnetic wave absorber near the terahertz band because of its abundant surface groups and excellent conductivity.However,the macro-preparation of sin...The single-layer Ti_(3)C_(2)T_(x)/MXene has become a special electromagnetic wave absorber near the terahertz band because of its abundant surface groups and excellent conductivity.However,the macro-preparation of single-layer Ti_(3)C_(2)T_(x)/MXene shows significantly difficult to influence its application.The two-dimensional Ti_(3)C_(2)T_(x)is easily prepared to have high production,but its weak absorption ability due to high surface conductivity also restricts its application.To realize the strong electromagnetic wave absorption of two-dimensional Ti_(3)C_(2)T_(x)/MXene,a new strategy with magnetic FeNi nanoparticles decorating Ti_(3)C_(2)T_(x)/MXene composites(FeNi-Ti_(3)C_(2)T_(x))were proposed and the effective electromagnetic wave absorption features covering 170-220 GHz that means the absorption band width reach 50 GHz.With an absorber composite film thickness being only 0.6 mm,the absorptivity of the composite is enhanced with the increase of decorating FeNi nanoparticles and promote up to 75%when the FeNi nanoparticles loading content reaches 30 wt%.The improvement of absorption is attributed to the introduction of soft magnetic FeNi to adjust the high surface conductivity of MXene and improve the electromagnetic balance of the absorber.展开更多
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw...Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.展开更多
Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2...Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2)O_(3) ceramics have been fabricated at very high sintering temperatures,but their optical quality and sintering process still need further improvement.In this work,5%Yb:Sc_(2)O_(3)(in mass)nano-powders were obtained by co-precipitation,and then transparent ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment.The cubic Yb:Sc_(2)O_(3) nano-powders with good dispersity and an average crystallite of 29 nm were obtained.Influence of pre-sintering temperatures(1500-1700℃)on densification process,microstructure changes,and optical transmittance of Yb:Sc_(2)O_(3) ceramics was detected.Experimental data revealed that all samples have a uniform microstructure,while the average grain sizes increase with the increase of the sintering temperatures.Impressively,the optimum in-line transmittance of Yb:Sc_(2)O_(3) ceramics,pre-sintered at 1550℃after HIP post-treatment,reaches 78.1%(theoretical value of 80%)at 1100 nm.Spectroscopic properties of the Yb:Sc_(2)O_(3) ceramics reveal that the minimum population inversion parameterβ2 and the luminescence decay time of 5%Yb:Sc_(2)O_(3) ceramics are 0.041 and 0.49 ms,respectively,which demonstrate that the optical quality of the Yb:Sc_(2)O_(3) has been improved.Meanwhile,their best vacuum sintering temperature can be controlled down to a lower temperature(1550℃).In conclusion,Yb:Sc_(2)O_(3) nano-powders are successfully synthesized by co-precipitation method,and good optical quality transparent ceramics are fabricated by vacuum pre-sintering at 1550℃and HIP post-treatment.展开更多
Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of...Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 10<sup>7</sup> atomic units (10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>33</sup> esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH<sub>3</sub>)<sub>2</sub> or -NHCH<sub>3</sub>) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.展开更多
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int...Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.展开更多
As electromagnetic technology advances and demand for electronic devices grows,concerns about electromagnetic pollution intensify.This has spurred focused research on innovative electromagnetic absorbers,particularly ...As electromagnetic technology advances and demand for electronic devices grows,concerns about electromagnetic pollution intensify.This has spurred focused research on innovative electromagnetic absorbers,particularly chalcogenides,noted for their superior absorption capabilities.In this study,we successfully synthesize 3R–TaS_(2)nanosheets using a straightforward calcination method for the first time.These nanosheets exhibit significant absorption capabilities in both the C-band(4–8 GHz)and Ku-band(12–18 GHz)frequency ranges.By optimizing the calcination process,the complex permittivity of TaS_(2)is enhanced,specifically for those synthesized at 1000℃for 24 h.The nanosheets possess dual-band absorption properties,with a notable minimum reflection loss(RLmin)of41.4 dB in the C-band,and an average absorption intensity exceeding 10 dB in C-and Ku-bands,in the absorbers with a thickness of 5.6 mm.Additionally,the 3R–TaS_(2)nanosheets are demonstrated to have an effective absorption bandwidth of 5.04 GHz(3.84–8.88 GHz)in the absorbers with thicknesses of 3.5–5.5 mm.The results highlight the multiple reflection effects in 3R–TaS_(2)as caused by their stacked structures,which could be promising low-frequency absorbers.展开更多
The construction of one-dimensional(1D)sulfides has attracted extensive attention for improving mi-crowave absorption(MA)performance owing to the anisotropic conductive networks.However,the syn-thesis of conductive 1D...The construction of one-dimensional(1D)sulfides has attracted extensive attention for improving mi-crowave absorption(MA)performance owing to the anisotropic conductive networks.However,the syn-thesis of conductive 1D hierarchical materials with unique interfacial polarization and excellent MA prop-erties remains challenging.In this study,cable-like MoS_(2)/Ni_(3)S_(2) was synthesized by a one-step hydrother-mal strategy.The complex permittivity of the binary composites could be improved by tuning the thick-ness of the MoS_(2) coating.Importantly,the construction of heterogeneous contacts by MoS_(2) and Ni_(3)S_(2) contributed to enhanced polarization loss,and the charge distribution was validated by electron holog-raphy.The wide efficient absorption bandwidth can reach above 4.8 GHz at a thin thickness.These new discoveries shed light on novel structures for 1D sulfide materials and the design of functional core-shell composites for microwave absorption.展开更多
Graphene has been extensively utilized in the domain of electromagnetic wave(EMW)absorption ma-terials because of its excellent electrical conductivity.However,the inferior impedance matching per-formance and the sing...Graphene has been extensively utilized in the domain of electromagnetic wave(EMW)absorption ma-terials because of its excellent electrical conductivity.However,the inferior impedance matching per-formance and the single loss mechanism vastly restrict the application.Hence,it’s an effective strat-egy to solve these issues by introducing magnetic components.Notably,layer double hydroxide(LDH)is an appropriate template to obtain magnetic component materials.Considering that ferromagnetic met-als such as Fe,Co,Ni,and their corresponding metal oxides are usually treated as magnetic compo-nents which are promising candidates for EMW absorption materials.Therefore,in this work,a FeNi-layered double hydroxide-reduced graphene oxide(FeNi-LDH-rGO)aerogel was synthesized through a series of processes such as electrostatic self-assembly,hydrothermal,freeze-drying,and annealing.The magnetic NiFe_(2)O_(4)@FeNi_(3)core-shell nanospheres were obtained from FeNi-LDH precursor,anchoring on rGO nanosheets after the annealing treatment.Furthermore,the effects of different mass ratios of LDH to GO as well as different annealing temperatures of LDH-rGO aerogel on the EMW absorption prop-erty and impedance matching performance were explored.As a consequence,the fabricated ultralight 600LDH-rGO 2:1 aerogel shows a broad effective absorption bandwidth(EAB)of 7.04 GHz at a thickness of 2.3 mm with a low filling content of only 6 wt%and a low density of 4.4 mg/cm^(3).In conclusion,the synthetic LDH-rGO aerogels offer an effective strategy for preparing EMW absorption materials that own three-dimensional porous network structure and unique magnetic NiFe_(2)O_(4)@FeNi_(3)core-shell struc-ture nanospheres.展开更多
基金support from the National Key Research and Development Program of China(No.2021YFB3701503)the Key Research and Development Program of Ningbo,China(No.2023Z107).
文摘As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.
基金supported by the National Key R&D Program of China(Nos.2023YFF0718303 and 2022YFB3504804)the National Natural Science Foundation of China(Nos.51871219,52031014 and 52401255)the Science and Technology Project of Shenyang City(No.22-101-0-27).
文摘The single-layer Ti_(3)C_(2)T_(x)/MXene has become a special electromagnetic wave absorber near the terahertz band because of its abundant surface groups and excellent conductivity.However,the macro-preparation of single-layer Ti_(3)C_(2)T_(x)/MXene shows significantly difficult to influence its application.The two-dimensional Ti_(3)C_(2)T_(x)is easily prepared to have high production,but its weak absorption ability due to high surface conductivity also restricts its application.To realize the strong electromagnetic wave absorption of two-dimensional Ti_(3)C_(2)T_(x)/MXene,a new strategy with magnetic FeNi nanoparticles decorating Ti_(3)C_(2)T_(x)/MXene composites(FeNi-Ti_(3)C_(2)T_(x))were proposed and the effective electromagnetic wave absorption features covering 170-220 GHz that means the absorption band width reach 50 GHz.With an absorber composite film thickness being only 0.6 mm,the absorptivity of the composite is enhanced with the increase of decorating FeNi nanoparticles and promote up to 75%when the FeNi nanoparticles loading content reaches 30 wt%.The improvement of absorption is attributed to the introduction of soft magnetic FeNi to adjust the high surface conductivity of MXene and improve the electromagnetic balance of the absorber.
基金supported by the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.
基金National Key R&D Program of China(2023YFE3812005)International Partnership Program of Chinese Academy of Sciences(121631KYSB20200039)+1 种基金National Center for Research and Development(WPC2/1/SCAPOL/2021)Chinese Academy of Sciences President’s International Fellowship Initiative(2024VEA0005,2024VEA0014)。
文摘Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2)O_(3) ceramics have been fabricated at very high sintering temperatures,but their optical quality and sintering process still need further improvement.In this work,5%Yb:Sc_(2)O_(3)(in mass)nano-powders were obtained by co-precipitation,and then transparent ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment.The cubic Yb:Sc_(2)O_(3) nano-powders with good dispersity and an average crystallite of 29 nm were obtained.Influence of pre-sintering temperatures(1500-1700℃)on densification process,microstructure changes,and optical transmittance of Yb:Sc_(2)O_(3) ceramics was detected.Experimental data revealed that all samples have a uniform microstructure,while the average grain sizes increase with the increase of the sintering temperatures.Impressively,the optimum in-line transmittance of Yb:Sc_(2)O_(3) ceramics,pre-sintered at 1550℃after HIP post-treatment,reaches 78.1%(theoretical value of 80%)at 1100 nm.Spectroscopic properties of the Yb:Sc_(2)O_(3) ceramics reveal that the minimum population inversion parameterβ2 and the luminescence decay time of 5%Yb:Sc_(2)O_(3) ceramics are 0.041 and 0.49 ms,respectively,which demonstrate that the optical quality of the Yb:Sc_(2)O_(3) has been improved.Meanwhile,their best vacuum sintering temperature can be controlled down to a lower temperature(1550℃).In conclusion,Yb:Sc_(2)O_(3) nano-powders are successfully synthesized by co-precipitation method,and good optical quality transparent ceramics are fabricated by vacuum pre-sintering at 1550℃and HIP post-treatment.
文摘Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 10<sup>7</sup> atomic units (10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>33</sup> esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH<sub>3</sub>)<sub>2</sub> or -NHCH<sub>3</sub>) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.
基金provided by Guizhou Provincial Science and Technology Projects for Platform and Talent Team Plan(GCC[2023]007)Fok Ying Tung Education Foundation(171095)National Natural Science Foundation of China(11964006).
文摘Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.
基金supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020A1515110905)+1 种基金Guangdong Special Fund for key Areas(20237DZX3042)Shenzhen Stable Support Project.
文摘As electromagnetic technology advances and demand for electronic devices grows,concerns about electromagnetic pollution intensify.This has spurred focused research on innovative electromagnetic absorbers,particularly chalcogenides,noted for their superior absorption capabilities.In this study,we successfully synthesize 3R–TaS_(2)nanosheets using a straightforward calcination method for the first time.These nanosheets exhibit significant absorption capabilities in both the C-band(4–8 GHz)and Ku-band(12–18 GHz)frequency ranges.By optimizing the calcination process,the complex permittivity of TaS_(2)is enhanced,specifically for those synthesized at 1000℃for 24 h.The nanosheets possess dual-band absorption properties,with a notable minimum reflection loss(RLmin)of41.4 dB in the C-band,and an average absorption intensity exceeding 10 dB in C-and Ku-bands,in the absorbers with a thickness of 5.6 mm.Additionally,the 3R–TaS_(2)nanosheets are demonstrated to have an effective absorption bandwidth of 5.04 GHz(3.84–8.88 GHz)in the absorbers with thicknesses of 3.5–5.5 mm.The results highlight the multiple reflection effects in 3R–TaS_(2)as caused by their stacked structures,which could be promising low-frequency absorbers.
基金Ministry of Science and Technology of China(973 Project Nos.2021YFA1200600 and 2018YFA0209100)National Natural Science Foundation of China(Nos.52231007,51725101,11727807)。
文摘The construction of one-dimensional(1D)sulfides has attracted extensive attention for improving mi-crowave absorption(MA)performance owing to the anisotropic conductive networks.However,the syn-thesis of conductive 1D hierarchical materials with unique interfacial polarization and excellent MA prop-erties remains challenging.In this study,cable-like MoS_(2)/Ni_(3)S_(2) was synthesized by a one-step hydrother-mal strategy.The complex permittivity of the binary composites could be improved by tuning the thick-ness of the MoS_(2) coating.Importantly,the construction of heterogeneous contacts by MoS_(2) and Ni_(3)S_(2) contributed to enhanced polarization loss,and the charge distribution was validated by electron holog-raphy.The wide efficient absorption bandwidth can reach above 4.8 GHz at a thin thickness.These new discoveries shed light on novel structures for 1D sulfide materials and the design of functional core-shell composites for microwave absorption.
文摘Graphene has been extensively utilized in the domain of electromagnetic wave(EMW)absorption ma-terials because of its excellent electrical conductivity.However,the inferior impedance matching per-formance and the single loss mechanism vastly restrict the application.Hence,it’s an effective strat-egy to solve these issues by introducing magnetic components.Notably,layer double hydroxide(LDH)is an appropriate template to obtain magnetic component materials.Considering that ferromagnetic met-als such as Fe,Co,Ni,and their corresponding metal oxides are usually treated as magnetic compo-nents which are promising candidates for EMW absorption materials.Therefore,in this work,a FeNi-layered double hydroxide-reduced graphene oxide(FeNi-LDH-rGO)aerogel was synthesized through a series of processes such as electrostatic self-assembly,hydrothermal,freeze-drying,and annealing.The magnetic NiFe_(2)O_(4)@FeNi_(3)core-shell nanospheres were obtained from FeNi-LDH precursor,anchoring on rGO nanosheets after the annealing treatment.Furthermore,the effects of different mass ratios of LDH to GO as well as different annealing temperatures of LDH-rGO aerogel on the EMW absorption prop-erty and impedance matching performance were explored.As a consequence,the fabricated ultralight 600LDH-rGO 2:1 aerogel shows a broad effective absorption bandwidth(EAB)of 7.04 GHz at a thickness of 2.3 mm with a low filling content of only 6 wt%and a low density of 4.4 mg/cm^(3).In conclusion,the synthetic LDH-rGO aerogels offer an effective strategy for preparing EMW absorption materials that own three-dimensional porous network structure and unique magnetic NiFe_(2)O_(4)@FeNi_(3)core-shell struc-ture nanospheres.