期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于NLS-4DVar方法的雷达资料同化及其在暴雨预报中的应用 被引量:3
1
作者 张斌 田向军 +1 位作者 张立凤 孙建华 《大气科学》 CSCD 北大核心 2017年第2期321-332,共12页
在基于本征正交分解POD(Proper Orthogonal Decomposition)的集合四维变分同化方法(POD4DEn Var)建立的雷达资料同化系统(PRAS)的基础上,本文利用非线性最小二乘法的集合四维变分同化方法(NLS-4DVar)对PRAS进行改进,解决PRAS在高度非线... 在基于本征正交分解POD(Proper Orthogonal Decomposition)的集合四维变分同化方法(POD4DEn Var)建立的雷达资料同化系统(PRAS)的基础上,本文利用非线性最小二乘法的集合四维变分同化方法(NLS-4DVar)对PRAS进行改进,解决PRAS在高度非线性情况下的适应性问题,建立了新的雷达资料同化系统(NRAS)。通过观测系统模拟试验OSSEs(Observing System Simulation Experiments)和两次实际暴雨同化试验(2010年7月8日,中国中部地区;2014年3月30日,中国华南地区)对NRAS进行检验,并与PRAS的同化结果进行了对比。结果表明:无论是OSSEs还是实际雷达资料的同化,相对于PRAS,NRAS能够进一步提高同化效果。通过增加迭代的次数,NRAS能够有效地调整初始场的风场和水汽场,进一步提高了降水强度和位置的预报精度。但随着迭代次数的增加,对初始场的调整变小,进而对降水预报效果的改进也减小。试验结果表明NRAS能够有效解决PRAS在高度非线性情况下的应用问题,通过有限次数的迭代,即可得到近似收敛的结果。因而NRAS有望在数值预报中更有效地同化雷达资料,提高中小尺度天气的预报水平。 展开更多
关键词 雷达资料同化 PRAS资料同化系统 nls-4dvar同化方法 NRAS资料同化系统 降水
在线阅读 下载PDF
非线性集合四维变分同化方法NLS-4DVar之局地化改进 被引量:2
2
作者 张洪芹 田向军 张承明 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第10期10-15,共6页
四维变分同化可利用同化窗口内所有可能的观测信息优化大气、海洋模式的初始场,从而极大地提高大气、海洋模式模拟性能,而作为4DVar标准算法的伴随方法始终无法避免繁琐与复杂的预报模式伴随方程的编程、维护以及更新。为避免伴随模式... 四维变分同化可利用同化窗口内所有可能的观测信息优化大气、海洋模式的初始场,从而极大地提高大气、海洋模式模拟性能,而作为4DVar标准算法的伴随方法始终无法避免繁琐与复杂的预报模式伴随方程的编程、维护以及更新。为避免伴随模式的使用,集合四维变分方法,4DEnVar方法被逐渐开发,为4DVar的求解提供了一种便捷的途径。4DEnVar一般通过局地化过程消除样本不足所造成的虚假相关,而局地化方案的不同也必然会影响到其最终的同化效果。本文将一种集合样本扩展的局地化方案引入到基于Gaussian-Newton迭代算法的非线性集合四维变分同化方法NLS-4DVar中,从而避免了原算法中为进行局地化过程而额外需要的线性化假设,使得算法收敛更稳定。另外,通过将原Gaussian-Newton迭代序列进行变形、避免了矩阵的直接求逆,极大地提高了同化算法的计算效率。利用非线性动力模型Lorenz-96所开展的观测系统模拟试验表明:采用新的样本扩展型局地化方案的NLS-4DVar算法,其同化精度略优于NLS-4DVar原始算法,由于避免了矩阵的直接求逆,其计算效率反而有所提高,同化所需时间有所降低,对于大气与海洋数据同化领域的应用具有极大的潜力。 展开更多
关键词 样本扩展型局地化方案 nls-4dvar 共轭梯度法
在线阅读 下载PDF
Impacts of Multigrid NLS-4DVar-based Doppler Radar Observation Assimilation on Numerical Simulations of Landfalling Typhoon Haikui (2012) 被引量:2
3
作者 Lu ZHANG Xiangjun TIAN +1 位作者 Hongqin ZHANG Feng CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第8期873-892,共20页
We applied the multigrid nonlinear least-squares four-dimensional variational assimilation(MG-NLS4DVar)method in data assimilation and prediction experiments for Typhoon Haikui(2012)using the Weather Research and Fore... We applied the multigrid nonlinear least-squares four-dimensional variational assimilation(MG-NLS4DVar)method in data assimilation and prediction experiments for Typhoon Haikui(2012)using the Weather Research and Forecasting(WRF)model.Observation data included radial velocity(Vr)and reflectivity(Z)data from a single Doppler radar,quality controlled prior to assimilation.Typhoon prediction results were evaluated and compared between the NLS-4DVar and MG-NLS4DVar methods.Compared with a forecast that began with NCEP analysis data,our radar data assimilation results were clearly improved in terms of structure,intensity,track,and precipitation prediction for Typhoon Haikui(2012).The results showed that the assimilation accuracy of the NLS-4DVar method was similar to that of the MG-NLS4DVar method,but that the latter was more efficient.The assimilation of Vr alone and Z alone each improved predictions of typhoon intensity,track,and precipitation;however,the impacts of Vr data were significantly greater that those of Z data.Assimilation window-length sensitivity experiments showed that a 6-h assimilation window with 30-min assimilation intervals produced slightly better results than either a 3-h assimilation window with 15-min assimilation intervals or a 1-h assimilation window with 6-min assimilation intervals. 展开更多
关键词 MG-NLS4dvar nls-4dvar radar data assimilation typhoon forecast
在线阅读 下载PDF
Application of multigrid NLS-4DVar in radar radial velocity data assimilation with WRF-ARW
4
作者 ZHANG Lu TIAN Xiangjun ZHANG Hongqin 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第6期409-416,共8页
The nonlinear least-squares four-dimensional variational assimilation(NLS-4DVar)method intro-duced here combines the merits of the ensemble Kalman lter and 4DVar assimilation methods.The multigrid NLS-4DVar method can... The nonlinear least-squares four-dimensional variational assimilation(NLS-4DVar)method intro-duced here combines the merits of the ensemble Kalman lter and 4DVar assimilation methods.The multigrid NLS-4DVar method can be implemented without adjoint models and also corrects small-to large-scale errors with greater accuracy.In this paper,the multigrid NLS-4DVar method is used in radar radial velocity data assimilations.Observing system simulation experiments were conducted to determine the capability and efficiency of multigrid NLS-4DVar for assimilating radar radial velocity with WRF-ARW(the Advanced Research Weather Research and Forecasting model).The results show signi cant improvement in 24-h cumulative precipitation prediction due to improved initial conditions after assimilating the radar radial velocity.Additionally,the multigrid NLS-4DVar method reduces computational cost. 展开更多
关键词 Heavy rainfall multigrid scheme nls-4dvar method radar radial velocity data assimilation
在线阅读 下载PDF
An Adjoint-Free CNOP–4DVar Hybrid Method for Identifying Sensitive Areas in Targeted Observations: Method Formulation and Preliminary Evaluation 被引量:4
5
作者 Xiangjun TIAN Xiaobing FENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第7期721-732,共12页
This paper proposes a hybrid method, called CNOP–4 DVar, for the identification of sensitive areas in targeted observations, which takes the advantages of both the conditional nonlinear optimal perturbation(CNOP) and... This paper proposes a hybrid method, called CNOP–4 DVar, for the identification of sensitive areas in targeted observations, which takes the advantages of both the conditional nonlinear optimal perturbation(CNOP) and four-dimensional variational assimilation(4 DVar) methods. The proposed CNOP–4 DVar method is capable of capturing the most sensitive initial perturbation(IP), which causes the greatest perturbation growth at the time of verification;it can also identify sensitive areas by evaluating their assimilation effects for eliminating the most sensitive IP. To alleviate the dependence of the CNOP–4 DVar method on the adjoint model, which is inherited from the adjoint-based approach, we utilized two adjointfree methods, NLS-CNOP and NLS-4 DVar, to solve the CNOP and 4 DVar sub-problems, respectively. A comprehensive performance evaluation for the proposed CNOP–4 DVar method and its comparison with the CNOP and CNOP–ensemble transform Kalman filter(ETKF) methods based on 10 000 observing system simulation experiments on the shallow-water equation model are also provided. The experimental results show that the proposed CNOP–4 DVar method performs better than the CNOP–ETKF method and substantially better than the CNOP method. 展开更多
关键词 CNOP 4dvar nls-4dvar TARGETED observations SENSITIVE area identification
在线阅读 下载PDF
System of Multigrid Nonlinear Least-squares Four-dimensional Variational Data Assimilation for Numerical Weather Prediction(SNAP):System Formulation and Preliminary Evaluation 被引量:1
6
作者 Hongqin ZHANG Xiangjun TIAN +1 位作者 Wei CHENG Lipeng JIANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第11期1267-1284,共18页
A new forecasting system-the System of Multigrid Nonlinear Least-squares Four-dimensional Variational(NLS-4DVar)Data Assimilation for Numerical Weather Prediction(SNAP)-was established by building upon the multigrid N... A new forecasting system-the System of Multigrid Nonlinear Least-squares Four-dimensional Variational(NLS-4DVar)Data Assimilation for Numerical Weather Prediction(SNAP)-was established by building upon the multigrid NLS-4DVar data assimilation scheme,the operational Gridpoint Statistical Interpolation(GSI)−based data-processing and observation operators,and the widely used Weather Research and Forecasting numerical model.Drawing upon lessons learned from the superiority of the operational GSI analysis system,for its various observation operators and the ability to assimilate multiple-source observations,SNAP adopts GSI-based data-processing and observation operator modules to compute the observation innovations.The multigrid NLS-4DVar assimilation framework is used for the analysis,which can adequately correct errors from large to small scales and accelerate iteration solutions.The analysis variables are model state variables,rather than the control variables adopted in the conventional 4DVar system.Currently,we have achieved the assimilation of conventional observations,and we will continue to improve the assimilation of radar and satellite observations in the future.SNAP was evaluated by case evaluation experiments and one-week cycling assimilation experiments.In the case evaluation experiments,two six-hour time windows were established for assimilation experiments and precipitation forecasts were verified against hourly precipitation observations from more than 2400 national observation sites.This showed that SNAP can absorb observations and improve the initial field,thereby improving the precipitation forecast.In the one-week cycling assimilation experiments,six-hourly assimilation cycles were run in one week.SNAP produced slightly lower forecast RMSEs than the GSI 4DEnVar(Four-dimensional Ensemble Variational)as a whole and the threat scores of precipitation forecasts initialized from the analysis of SNAP were higher than those obtained from the analysis of GSI 4DEnVar. 展开更多
关键词 data assimilation numerical weather prediction nls-4dvar MULTIGRID GSI
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部