CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas,owing to their excellent insulating performance.This paper attempts to study the CF3I ternary gas m...CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas,owing to their excellent insulating performance.This paper attempts to study the CF3I ternary gas mixtures with c-C4F8 and buffer gases N2 and CO2 by considering dielectric strength from electron transport parameters based on the Boltzmann method and synergistic effect analysis,compared with SF6 gas mixtures.The results confirm that the critical electric field strength of CF3I/c-C4F8/70%CO2 is greater than that of 30%SF6/70%CO2 when the CF3I content is greater than 17%.Moreover,a higher content of c-C4F8 decreases the sensitivity of gas mixtures to an electric field,and this phenomenon is more obvious in CF3I/c-C4F8/CO2 gas mixtures.The synergistic effects for CF3I/c-C4F8/70%N2 were most obvious when the c-C4F8 content was approximately 20%,and for CF3I/c-C4F8/70%CO2 when the c-C4F8 content was approximately 10%.On the basis of this research,CF3I/c-C4F8/70%N2 shows better insulation performance when the c-C4F8 content is in the15%–20%range.For CF3I/c-C4F8/70%CO2,when the c-C4F8 content is in the 10%–15%range,the gas mixtures have excellent performance.Hence,these gas systems might be used as alternative gas mixtures to SF6 in high-voltage equipment.展开更多
To obtain the fundamental data of CO2/N2 gas mixture hydrate formation kinetics and CO2 separation and sequestration mechanisms,the gas hydrate formation process by a binary CO2/N2 gas mixture(50:50)in fine sediments(...To obtain the fundamental data of CO2/N2 gas mixture hydrate formation kinetics and CO2 separation and sequestration mechanisms,the gas hydrate formation process by a binary CO2/N2 gas mixture(50:50)in fine sediments(150–250μm)was investigated in a semibatch vessel at variable temperatures(273,275,and 277 K)and pressures(5.8–7.8 MPa).During the gas hydrate reaction process,the changes in the gaseous phase composition were determined by gas chromatography.The results indicate that the gas hydrate formation process of the binary CO2/N2 gas mixture in fine sediments can be reduced to two stages.Firstly,the dissolved gas containing a large amount of CO2 formed gas hydrates,and then gaseous N2 participated in the gas hydrate formation.In the second stage,all the dissolved gas was consumed.Thus,both gaseous CO2 and N2 diffused into sediment.The first stage in different experiments lasted for 5–15 h,and>60%of the gas was consumed in this period.The gas consumption rate was greater in the first stage than in the second stage.After the completion of gas hydrate formation,the CO2 content in the gas hydrate was more than that in the gas phase.This indicates that CO2 formed hydrate easily than N2 in the binary mixture.Higher operating pressures and lower temperatures increased the gas consumption rate of the binary gas mixture in gas hydrate formation.展开更多
The potential energy snrface of a CO2-N2 mixture is determined by using an inversion method, together with a new collision integral correlation [J. Phys. Chem. R@ Data 19 1179 (1990)]. With the new invert potential,...The potential energy snrface of a CO2-N2 mixture is determined by using an inversion method, together with a new collision integral correlation [J. Phys. Chem. R@ Data 19 1179 (1990)]. With the new invert potential, the transport properties of CO2-N2 mixture are presented in a temperature range front 273.15 K to 3273.15 K at low density by employing the Chapman-Enskog scheme and the Wang Chang-Uhlenbeck de Boer theory, consisting of a viscosity coefficient, a thermal conductivity coefficient, a binary diffusion coefficient, and a thermal diffusion factor. The accuracy of the predicted results is estimated to be 2% for viscosity, 5% for thermal conductivity, and 10% for binary diffusion coefficient.展开更多
基金supported by National Natural Science Foundation of China(No.51337006)。
文摘CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas,owing to their excellent insulating performance.This paper attempts to study the CF3I ternary gas mixtures with c-C4F8 and buffer gases N2 and CO2 by considering dielectric strength from electron transport parameters based on the Boltzmann method and synergistic effect analysis,compared with SF6 gas mixtures.The results confirm that the critical electric field strength of CF3I/c-C4F8/70%CO2 is greater than that of 30%SF6/70%CO2 when the CF3I content is greater than 17%.Moreover,a higher content of c-C4F8 decreases the sensitivity of gas mixtures to an electric field,and this phenomenon is more obvious in CF3I/c-C4F8/CO2 gas mixtures.The synergistic effects for CF3I/c-C4F8/70%N2 were most obvious when the c-C4F8 content was approximately 20%,and for CF3I/c-C4F8/70%CO2 when the c-C4F8 content was approximately 10%.On the basis of this research,CF3I/c-C4F8/70%N2 shows better insulation performance when the c-C4F8 content is in the15%–20%range.For CF3I/c-C4F8/70%CO2,when the c-C4F8 content is in the 10%–15%range,the gas mixtures have excellent performance.Hence,these gas systems might be used as alternative gas mixtures to SF6 in high-voltage equipment.
基金Supported by the National Key Research and Development Plan of China(2017YFC0307306)National Natural Science Foundation of China(51676197,51576197)+2 种基金CAS Program(KGZD-EW-301)Guangzhou Science and Technology Project(201804010411)Youth Innovation Promotion Association CAS
文摘To obtain the fundamental data of CO2/N2 gas mixture hydrate formation kinetics and CO2 separation and sequestration mechanisms,the gas hydrate formation process by a binary CO2/N2 gas mixture(50:50)in fine sediments(150–250μm)was investigated in a semibatch vessel at variable temperatures(273,275,and 277 K)and pressures(5.8–7.8 MPa).During the gas hydrate reaction process,the changes in the gaseous phase composition were determined by gas chromatography.The results indicate that the gas hydrate formation process of the binary CO2/N2 gas mixture in fine sediments can be reduced to two stages.Firstly,the dissolved gas containing a large amount of CO2 formed gas hydrates,and then gaseous N2 participated in the gas hydrate formation.In the second stage,all the dissolved gas was consumed.Thus,both gaseous CO2 and N2 diffused into sediment.The first stage in different experiments lasted for 5–15 h,and>60%of the gas was consumed in this period.The gas consumption rate was greater in the first stage than in the second stage.After the completion of gas hydrate formation,the CO2 content in the gas hydrate was more than that in the gas phase.This indicates that CO2 formed hydrate easily than N2 in the binary mixture.Higher operating pressures and lower temperatures increased the gas consumption rate of the binary gas mixture in gas hydrate formation.
基金supported by the National Natural Science Foundation of China (Grant No. 51006083)the China Postdoctoral Science Foundation (Grant No. 20110491658)the Fundamental Research Funds for the Central Universities
文摘The potential energy snrface of a CO2-N2 mixture is determined by using an inversion method, together with a new collision integral correlation [J. Phys. Chem. R@ Data 19 1179 (1990)]. With the new invert potential, the transport properties of CO2-N2 mixture are presented in a temperature range front 273.15 K to 3273.15 K at low density by employing the Chapman-Enskog scheme and the Wang Chang-Uhlenbeck de Boer theory, consisting of a viscosity coefficient, a thermal conductivity coefficient, a binary diffusion coefficient, and a thermal diffusion factor. The accuracy of the predicted results is estimated to be 2% for viscosity, 5% for thermal conductivity, and 10% for binary diffusion coefficient.