Proton exchange membrane fuel cells(PEMFCs)constitute a promising avenue for environmentally friendly power generation.However,the reliance on unsustainable platinum-based electrocatalysts used at the electrodes poses...Proton exchange membrane fuel cells(PEMFCs)constitute a promising avenue for environmentally friendly power generation.However,the reliance on unsustainable platinum-based electrocatalysts used at the electrodes poses challenges to the commercial viability of PEMFCs.Non-platinum group metal(non-PGM)alternatives,like nitrogen-coordinated transition metals in atomic dispersion(M–N–C catalysts),show significant potential.This work presents a comparative study of two distinct sets of Fe–N–C materials,prepared by pyrolyzing hybrid composites of polyaniline(PANI)and iron(Ⅱ)chloride on a hard template.One set uses bipyridine(BPy)as an additional nitrogen source and iron ligand,offering an innovative approach.The findings reveal that the choice of pyrolysis temperature and atmosphere influences the catalyst properties.The use of ammonia in pyrolysis emerges as a crucial parameter for promoting atomic dispersion of iron,as well as increasing surface area and porosity.The optimal catalyst,prepared using BPy and ammonia,exhibits a half-wave potential of 0.834 V in 0.5 M H_(2)SO_(4)(catalyst loading of 0.6 mg cm^(-2)),a mass activity exceeding 3 A g^(-1)and high stability in acidic electrolyte,positioning it as a promising non-PGM structure in the field.展开更多
The anomalous dimensions of the quantum fields are the Hausdorff dimensiongrad. The present candidate of the renormalization constant is the generalized Cantor discontinuum. The Hausdorff dimensiongrad of the Minkowsk...The anomalous dimensions of the quantum fields are the Hausdorff dimensiongrad. The present candidate of the renormalization constant is the generalized Cantor discontinuum. The Hausdorff dimensiongrad of the Minkowski space time is based upon the point set with σ-length on light cone.展开更多
Phase transition and band structure tuned by uniaxial and biaxial strains are systematically investigated based on the density-functional theory for ordered All/2 Ga1/2N alloys of complex structures. Although the stru...Phase transition and band structure tuned by uniaxial and biaxial strains are systematically investigated based on the density-functional theory for ordered All/2 Ga1/2N alloys of complex structures. Although the structural transformations to graphite-like from wurtzite are energetically favorable for both types of strain, the phase transitions are different in nature: the second-order transition induced by uniaxial strain is jointly driven by the mechanical and dynamical instabilities and the first-order transition by biaxial strain only by the mechanical instability. The wurtzite phase always shows the direct band gap, while the band gap of the graphite-like phase is always indirect. Furthermore, the band gaps of the wurtzite phase can be reduced by both types of strain, while that of the graphite-like phase is enhanced by uniaxial strain and is suppressed by biaxial strain.展开更多
Geometries, energies, and vibrational frequencies for two C4N12O4 isomers with pagodane- and isopagodane-like structures have been calculated at the B3LYP/6-31G* level.Isomers 1 and 2 are of D2h and D2d symmetry, res...Geometries, energies, and vibrational frequencies for two C4N12O4 isomers with pagodane- and isopagodane-like structures have been calculated at the B3LYP/6-31G* level.Isomers 1 and 2 are of D2h and D2d symmetry, respectively. Heats of formation for the two C4N12O4 isomers have been estimated in this paper, indicating they would be reasonable candidates for high energy density materials.展开更多
Regulation of optical properties and electronic structure of graphitic carbon nitride (g-C3N4 ) via external strain has attracted much attention due to its potential in photocatalyst and electronic devices. However,...Regulation of optical properties and electronic structure of graphitic carbon nitride (g-C3N4 ) via external strain has attracted much attention due to its potential in photocatalyst and electronic devices. However, the identifi- cation of g-C3N4 structure transformation induced by strain is greatly lacking. In this work, the Raman spectra of g-C3N4 with external strain are determined theoretically based on the density function theory. Deformation induced by external strain not only regulates the Raman mode positions but also leads to a I^aman mode split- ting, which can be ascribed to crystal symmetry destruction by strain engineering. Our results suggest the use of Raman scattering in structural identification in deformed 9-C3N4 structure.展开更多
The coordination compounds,{Cu[CH_3C_6H_4N(CH_2COO)_2]}.2H_2O and {Cu[CH_3OC_6H_4N(CH_2COO)_2]}.2H_2O,have been prepared and its crystal struc- tures determined.The final discrepancy factors are R=0.052,R_w=0.061 for ...The coordination compounds,{Cu[CH_3C_6H_4N(CH_2COO)_2]}.2H_2O and {Cu[CH_3OC_6H_4N(CH_2COO)_2]}.2H_2O,have been prepared and its crystal struc- tures determined.The final discrepancy factors are R=0.052,R_w=0.061 for (I)and R=0.052,R_w=0.039 for(Ⅱ).The geometry of the coordination poly- hedron with Cu(Ⅱ)is a distorted tetragonal pyramid for(Ⅰ)and an unsym- metrical and extended tetragonal bipyramid for(Ⅱ),respectively.The re- sults of EHMO calculations indicate that the ligand mainly provided the field with very few of its electrons being coordinated to the central atom.展开更多
The dielectric properties of Au/Si3N4/n-Si (MIS) structures are studied using the admittance measurements (C–V and G/ω–V) each as a function of temperature in a range from 80 K to 400 K for two frequencies (10...The dielectric properties of Au/Si3N4/n-Si (MIS) structures are studied using the admittance measurements (C–V and G/ω–V) each as a function of temperature in a range from 80 K to 400 K for two frequencies (100 kHz and 1 MHz). Experimental results show that both the dielectric constant (ε’) and the dielectric loss (ε") increase with temperature increasing and decrease with frequency increasing. The measurements also show that the ac conductivity (σac) increases with temperature and frequency increasing. The lnσac versus 1000/T plot shows two linear regions with different slopes which correspond to low (120 K–240 K) and high (280 K–400 K) temperature ranges for the two frequencies. It is found that activation energy increases with frequency and temperature increasing.展开更多
An increased amount of DNA fragme ntation in the spermatozoa(SDF)is linked to male in fertility.The Sperm Chromati n Structure Assay(SCSA)is widely used for analysis of SDF.However,the current software(SCSASoftR)linke...An increased amount of DNA fragme ntation in the spermatozoa(SDF)is linked to male in fertility.The Sperm Chromati n Structure Assay(SCSA)is widely used for analysis of SDF.However,the current software(SCSASoftR)linked to this assay is licensed and often located within larger diagnostic centers.In this study,we present a protocol for using other types of software than SCSASoftR to determine the SDF index(DFI)with clinical relevance.This protocol is engineered after collect!ng and analyzing 254 samples from fertility patients and sperm donors over a 15-month period.DFI is analyzed using a strict protocol where the spermatozoa are treated with a strong acid(pH 1.2)followed by acridine orange.DFI is determined by a standard flow cytometric software,FACSDiva 6.1.3.Analysis of the outcome of the fertility treatment is included for 137 patients receiving either intrauterine inseminations(IUI)or timed coitus(TC).The results show that the chance of pregnancy decli nes as DFI in creases.We also found that the male DFI affects the chanee of pregnancy independent of the female age.We have shown that a standard flow cytometric software can be used when determi ning a clinical releva nt DFI.These findings are a sign ificant step toward impleme nting the an alysis as a part of the routi ne,in・house diag no sing of the male fertility patient and subseque ntly optimizing the treatme nt course of the couple with reduced human and financial costs.展开更多
Fe/N/C is a promising non-platinum catalyst for the oxygen reduction reaction (ORR). Even so, mass transfer remains a challenge in the application of Fe/N/C to proton exchange membrane fuel cells, due to the high ca...Fe/N/C is a promising non-platinum catalyst for the oxygen reduction reaction (ORR). Even so, mass transfer remains a challenge in the application of Fe/N/C to proton exchange membrane fuel cells, due to the high catalyst loadings required. In the present work, mesoporous Fe/N/C was syn- thesized through heat treatment of K]600 carbon black coated with poly-2-aminobenzimidazole and FeC13. The as-prepared Fe/N/C possesses a unique hollow-shell structure that contains a buffer zone allowing both water formation and vaporization, and also facilitates the mass transfer of gas- eous oxygen. This catalyst generated an oxygen reduction reaction activiW of 9.21 A/g in conjunc- tion with a peak power density of 0.71 W/cm2.展开更多
Atomically dispersed metal-nitrogen sites-anchored carbon materials have been developed as effective catalysts for CO2 electroreduction(CO2 ER),but they still suffer from the imprecisely control of type and coordinati...Atomically dispersed metal-nitrogen sites-anchored carbon materials have been developed as effective catalysts for CO2 electroreduction(CO2 ER),but they still suffer from the imprecisely control of type and coordination number of N atoms bonded with central metal.Herein,we develop a family of single metal atom bonded by N atoms anchored on carbons(SAs-M-N-C,M=Fe,Co,Ni,Cu)for CO2 ER,which composed of accurate pyrrole-type M-N4 structures with isolated metal atom coordinated by four pyrrolic N atoms.Benefitting from atomically coordinated environment and specific selectivity of M-N4 centers,SAs-Ni-N-C exhibits superior CO2 ER performance with onset potential of-0.3 V,CO Faradaic efficiency(F.E.) of 98.5%at-0.7 V,along with low Tafel slope of 115 mV dec-1 and superior stability of 50 h,exceeding all the previously reported M-N-C electrocatalysts for CO2-to-CO conversion.Experimental results manifest that the different intrinsic activities of M-N4 structures in SAs-M-N-C result in the corresponding sequence of Ni> Fe> Cu> Co for CO2 ER performance.An integrated Zn-CO2 battery with Zn foil and SAs-Ni-N-C is constructed to simultaneously achieve CO2-to-CO conversion and electric energy output,which delivers a peak power density of 1.4 mW cm-2 and maximum CO F.E.of 93.3%.展开更多
{[Cu_3(cis-DAM)_4(OH)_2]·12H_2O}_n 1 and [Ag_3(trans-DAM)_2(NO_3)]_n 2 with a flexible ligand N,NA-diacetic acid imidazolium(HDAM) were synthesized and characterized by single-crystal X-ray diffraction....{[Cu_3(cis-DAM)_4(OH)_2]·12H_2O}_n 1 and [Ag_3(trans-DAM)_2(NO_3)]_n 2 with a flexible ligand N,NA-diacetic acid imidazolium(HDAM) were synthesized and characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the orthorhombic I222 space group with a = 12.033(2),b = 12.498(3),c = 14.963(3) A,V = 2250.4(8) A^3,Z = 8,C_7H_(13.5)N_2O_(7.5)Cu_(0.75),M_r = 293.35,D_c = 1.732 g·cm^-3,F(000) = 1210,GOF = 1.087,the final R(I 〉 2σ(I)) = 0.0521 and w R(all data) = 0.1386. Compound 2 crystallizes in the monoclinic C2/c space group with a = 21.601(4),b = 8.321(2),c = 13.589(3) A,β = 126.95(3)°,V = 1951.9(7) A^3,Z = 8,C_7H_7N_(2.5)O_(5.5)Ag_(1.5),M_r = 375.96,D_c = 2.559 g·cm^-3,F(000) = 1448,GOF = 1.017,R(I 〉 2σ(I)) = 0.0222 and w R(all data) = 0.0633. Compound 1 displays a novel 2D layer,consisting of a couple of left-helical chains with a pitch of 12.498(3) A formed by μ_3-cis-DAM~– ligands and Cu(1) ions,which are stabilized by hydrogen bonding interactions to give a 3D supramolecular framework. As for 2,Ag(1) ions are doubly bridged by trans-DAM~– and NO_3~– to form [Ag(1)_2O_4] chains,which are further connected by Ag(2) and trans-DAM~– to build a 3D framework. Additionally,thermogravimetric analyses,FT-IR spectroscopy,UV-visible spectroscopy,and the fluorescent properties were discussed.展开更多
A potassium organic-inorganic hybrid complex {H2[K(PMo12O40)(CH3CN)3]- (dpdo)2(H2O)}n 1 (dpdo = 4,4'-bipyridine-N,N'-dioxide) with special channels for the chain-like assembly of decorated Keggin-type anio...A potassium organic-inorganic hybrid complex {H2[K(PMo12O40)(CH3CN)3]- (dpdo)2(H2O)}n 1 (dpdo = 4,4'-bipyridine-N,N'-dioxide) with special channels for the chain-like assembly of decorated Keggin-type anions was synthesized and structurally characterized. The crystal structure was determined by single-crystal X-ray diffraction. The crystal is of orthorhombic, space group Cmcm with a = 20.5328(17), b = 16.8877(14), c = 16,1454(14) A, V = 5598.4(8) A^3, Z = 4, C26H29N7O45KMo12P, Mr= 2380.91, Dc = 2.825 g/cm^3,μ = 2.813 mm^-1, F(000) = 4528, the final R = 0.0324 and wR = 0.0880 for 2577 observed reflections with I 〉 2σ(I). Compound 1 exhibits a 3D network structure with large channels hosting decorated poly-anion chains as vips.展开更多
Methylation of the N6 position of adenine, termed N6-methyladenine, protects DNA from restriction endonucleases via the host-specific restriction-modification system. N6-methyladenine was discovered and has been well ...Methylation of the N6 position of adenine, termed N6-methyladenine, protects DNA from restriction endonucleases via the host-specific restriction-modification system. N6-methyladenine was discovered and has been well studied in bacteria. N6-adenine-specific DNA methyltransferase(N6AMT) is the main enzyme catalyzing the methylation of the adenine base and knowledge of this enzyme was mainly derived from work in prokaryotic models. However, large-scale gene discovery at the genome level in many model organisms indicated that the N6AMT gene also exists in eukaryotes, such as humans, mice, fruit flies and plants. Here, we cloned a N6AMT gene from Nilaparvata lugens(Nlu-N6AMT) and amplified its fulllength transcript. Then, we carried out a systematic investigation of N6AMT in 33 publically available insect genomes, indicating that all studied insects had N6AMT. Genomic structure analysis showed that insect N6AMT has short introns compared with the mammalian homologs. Domain and phylogenetic analysis indicated that insect N6AMT had a conserved N6-adenine Mlase domain that is specific to catalyze the adenine methylation. Nlu-N6AMT was highly expressed in the adult female. We knocked down Nlu-N6AMT by feeding ds RNA from the second instar nymph to adult female, inducing retard development of adult female. In all, we provide the first genome-wide analysis of N6AMT in insects and presented the experimental evidence that N6AMT might have important functions in reproductive development and ovary maturation.展开更多
Two body centered tetragonal (bet) crystal structures of α'-Fe_(16)N_2 with x=0.25, z=0.3125 (Jack-1) and x=0.222, z=0.306 (Jack-2) respectively, were analyzed theoretically with EMS software package. The simulat...Two body centered tetragonal (bet) crystal structures of α'-Fe_(16)N_2 with x=0.25, z=0.3125 (Jack-1) and x=0.222, z=0.306 (Jack-2) respectively, were analyzed theoretically with EMS software package. The simulation of diffraction patterns indicates that both diffraction patterns of the same axis in these two structures obey bcc extinction rule. The conclusion is also obtained from the analyses of the diffracted waves. α'-Fe_(16)N_2 precipitates in the diffusion layer of ion-nitrided α-iron have been studied with transmission electron microscope (TEM). We have distinctly observed the electron diffraction patterns of α'-Fe_(16)N_2 in [100], [111], [110], [011], [210], [021], [311], [113], [331] and [133] zone axes with perfect symmetry, which indicate the parallel orientation relationship with α matrix:<001>α'//<001>α'// {100}.α'// {100}tα. The analyses of diffraction patterns, which obey bcc extinction rule, verify the bct structure of α'-Fe_(16)N_2 discovered by X-ray diffraction.展开更多
The title compound has been synthesized and its crystal structure was determined by X-ray crystallographic method.The crystal is triclinic,space group P-1,with unit cell dimensions a=6.146 (5),b=8.473(6),c=14.383(5)(?...The title compound has been synthesized and its crystal structure was determined by X-ray crystallographic method.The crystal is triclinic,space group P-1,with unit cell dimensions a=6.146 (5),b=8.473(6),c=14.383(5)(?);a=77.47(4),β=82.84(4),γ=69.00(8)°and Z=2.The results obtained reveal that the molecule of the title compound keeps a long conjugative system in- volving C=C double bond,cyclopropane ring,carbonyl group and isoxazolinone ring and adopts a low energy conformation including s-trans of C=C double bond,s-cis of carbonyl group with respect to the three-membered ring and like-s-trans of carbonyl group with the carbonyl group within the heterocyclic moiety.展开更多
The resistive switching(RS)mechanism of hybrid organic–inorganic perovskites has not been clearly understood until now.A switchable diode-like RS behavior in MAPbBr3 single crystals using Au(or Pt)symmetric electrode...The resistive switching(RS)mechanism of hybrid organic–inorganic perovskites has not been clearly understood until now.A switchable diode-like RS behavior in MAPbBr3 single crystals using Au(or Pt)symmetric electrodes is reported.Both the high resistance state(HRS)and low resistance state(LRS)are electrode-area dependent and light responsive.We propose an electric-fielddriven inner p–n junction accompanied by a trap-controlled space-charge-limited conduction(SCLC)conduction mechanism to explain this switchable diode-like RS behavior in MAPbBr_(3) single crystals.展开更多
As the era of nanoelectronics is dawning,CNT(carbon nanotube),a one-dimensional nano material with outstanding properties and performances,has aroused wide attention.In order to study its optical and electrical prop...As the era of nanoelectronics is dawning,CNT(carbon nanotube),a one-dimensional nano material with outstanding properties and performances,has aroused wide attention.In order to study its optical and electrical properties,this paper has researched the influence of tension-twisting deformation,defects,and mixed type on the electronic structure and optical properties of the armchair carbon nanotube superlattices doped cyclic alternately with B and N by using the first-principle method.Our findings show that if tension-twisting deformation is conducted,then the geometric structure,bond length,binding energy,band gap and optical properties of B,N doped carbon nanotube superlattices with defects and mixed type will be influenced.As the degree of exerted tension-twisting deformation increases,B,N doped carbon nanotube superlattices become less stable,and B,N doped carbon nanotube superlattices with defects are more stable than that with exerted tension-twisting deformations.Proper tension-twisting deformation can adjust the energy gap of the system;defects can only reduce the energy gap,enhancing the system metallicity;while the mixed type of 5%tension,twisting angle of 15° and atomic defects will significantly increase the energy gap of the system.From the perspective of optical properties,doped carbon nanotubes may transform the system from metallicity into semi-conductivity.展开更多
Organometallic perovskite is a new generation photovoltaic material with exemplary properties such as high absorption co-efficient,optimal bandgap,high defect tolerance factor and long carrier diffusion length.However...Organometallic perovskite is a new generation photovoltaic material with exemplary properties such as high absorption co-efficient,optimal bandgap,high defect tolerance factor and long carrier diffusion length.However,suitable electrodes and charge transport materials are required to fulfill photovoltaic processes where interfaces between hole transport material/perovskite and perovskite/electron transport material are affected by phenomena of charge carrier separation,transportation,collection by the interfaces and band alignment.Based on recent available literature and several strategies for minimizing the recombination of charge carriers at the interfaces,this review addresses the properties of hole transport materials,relevant working mechanisms,and the interface engineering of perovskite solar cell(PSC)device architecture,which also provides significant insights to design and development of PSC devices with high efficiency.展开更多
基金funding from the Hellenic Foundation for Research and Innovation(HFRI)under grant agreement No 3655.
文摘Proton exchange membrane fuel cells(PEMFCs)constitute a promising avenue for environmentally friendly power generation.However,the reliance on unsustainable platinum-based electrocatalysts used at the electrodes poses challenges to the commercial viability of PEMFCs.Non-platinum group metal(non-PGM)alternatives,like nitrogen-coordinated transition metals in atomic dispersion(M–N–C catalysts),show significant potential.This work presents a comparative study of two distinct sets of Fe–N–C materials,prepared by pyrolyzing hybrid composites of polyaniline(PANI)and iron(Ⅱ)chloride on a hard template.One set uses bipyridine(BPy)as an additional nitrogen source and iron ligand,offering an innovative approach.The findings reveal that the choice of pyrolysis temperature and atmosphere influences the catalyst properties.The use of ammonia in pyrolysis emerges as a crucial parameter for promoting atomic dispersion of iron,as well as increasing surface area and porosity.The optimal catalyst,prepared using BPy and ammonia,exhibits a half-wave potential of 0.834 V in 0.5 M H_(2)SO_(4)(catalyst loading of 0.6 mg cm^(-2)),a mass activity exceeding 3 A g^(-1)and high stability in acidic electrolyte,positioning it as a promising non-PGM structure in the field.
文摘The anomalous dimensions of the quantum fields are the Hausdorff dimensiongrad. The present candidate of the renormalization constant is the generalized Cantor discontinuum. The Hausdorff dimensiongrad of the Minkowski space time is based upon the point set with σ-length on light cone.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No 2013QNA38
文摘Phase transition and band structure tuned by uniaxial and biaxial strains are systematically investigated based on the density-functional theory for ordered All/2 Ga1/2N alloys of complex structures. Although the structural transformations to graphite-like from wurtzite are energetically favorable for both types of strain, the phase transitions are different in nature: the second-order transition induced by uniaxial strain is jointly driven by the mechanical and dynamical instabilities and the first-order transition by biaxial strain only by the mechanical instability. The wurtzite phase always shows the direct band gap, while the band gap of the graphite-like phase is always indirect. Furthermore, the band gaps of the wurtzite phase can be reduced by both types of strain, while that of the graphite-like phase is enhanced by uniaxial strain and is suppressed by biaxial strain.
基金This work was supported by the Natural Science Foundation of Shandong Province (Y2002G11)
文摘Geometries, energies, and vibrational frequencies for two C4N12O4 isomers with pagodane- and isopagodane-like structures have been calculated at the B3LYP/6-31G* level.Isomers 1 and 2 are of D2h and D2d symmetry, respectively. Heats of formation for the two C4N12O4 isomers have been estimated in this paper, indicating they would be reasonable candidates for high energy density materials.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61264008 and 61274121the Natural Science Foundation of Jiangsu Province under Grant No BK2012829
文摘Regulation of optical properties and electronic structure of graphitic carbon nitride (g-C3N4 ) via external strain has attracted much attention due to its potential in photocatalyst and electronic devices. However, the identifi- cation of g-C3N4 structure transformation induced by strain is greatly lacking. In this work, the Raman spectra of g-C3N4 with external strain are determined theoretically based on the density function theory. Deformation induced by external strain not only regulates the Raman mode positions but also leads to a I^aman mode split- ting, which can be ascribed to crystal symmetry destruction by strain engineering. Our results suggest the use of Raman scattering in structural identification in deformed 9-C3N4 structure.
基金Subject supported by the Doctoral Foundation of National Education Commission of China
文摘The coordination compounds,{Cu[CH_3C_6H_4N(CH_2COO)_2]}.2H_2O and {Cu[CH_3OC_6H_4N(CH_2COO)_2]}.2H_2O,have been prepared and its crystal struc- tures determined.The final discrepancy factors are R=0.052,R_w=0.061 for (I)and R=0.052,R_w=0.039 for(Ⅱ).The geometry of the coordination poly- hedron with Cu(Ⅱ)is a distorted tetragonal pyramid for(Ⅰ)and an unsym- metrical and extended tetragonal bipyramid for(Ⅱ),respectively.The re- sults of EHMO calculations indicate that the ligand mainly provided the field with very few of its electrons being coordinated to the central atom.
基金Projected supported by Gazi University Scientific Research Project(BAP),FEF.05/2012-15
文摘The dielectric properties of Au/Si3N4/n-Si (MIS) structures are studied using the admittance measurements (C–V and G/ω–V) each as a function of temperature in a range from 80 K to 400 K for two frequencies (100 kHz and 1 MHz). Experimental results show that both the dielectric constant (ε’) and the dielectric loss (ε") increase with temperature increasing and decrease with frequency increasing. The measurements also show that the ac conductivity (σac) increases with temperature and frequency increasing. The lnσac versus 1000/T plot shows two linear regions with different slopes which correspond to low (120 K–240 K) and high (280 K–400 K) temperature ranges for the two frequencies. It is found that activation energy increases with frequency and temperature increasing.
文摘An increased amount of DNA fragme ntation in the spermatozoa(SDF)is linked to male in fertility.The Sperm Chromati n Structure Assay(SCSA)is widely used for analysis of SDF.However,the current software(SCSASoftR)linked to this assay is licensed and often located within larger diagnostic centers.In this study,we present a protocol for using other types of software than SCSASoftR to determine the SDF index(DFI)with clinical relevance.This protocol is engineered after collect!ng and analyzing 254 samples from fertility patients and sperm donors over a 15-month period.DFI is analyzed using a strict protocol where the spermatozoa are treated with a strong acid(pH 1.2)followed by acridine orange.DFI is determined by a standard flow cytometric software,FACSDiva 6.1.3.Analysis of the outcome of the fertility treatment is included for 137 patients receiving either intrauterine inseminations(IUI)or timed coitus(TC).The results show that the chance of pregnancy decli nes as DFI in creases.We also found that the male DFI affects the chanee of pregnancy independent of the female age.We have shown that a standard flow cytometric software can be used when determi ning a clinical releva nt DFI.These findings are a sign ificant step toward impleme nting the an alysis as a part of the routi ne,in・house diag no sing of the male fertility patient and subseque ntly optimizing the treatme nt course of the couple with reduced human and financial costs.
基金supported by the National Basic Research Program of Chain(973 Program,2015CB932300)the National Natural Science Foundation of China(21373175,21321062,21361140374)Fundamental Research Funds for the Central Universities(20720150109)
文摘Fe/N/C is a promising non-platinum catalyst for the oxygen reduction reaction (ORR). Even so, mass transfer remains a challenge in the application of Fe/N/C to proton exchange membrane fuel cells, due to the high catalyst loadings required. In the present work, mesoporous Fe/N/C was syn- thesized through heat treatment of K]600 carbon black coated with poly-2-aminobenzimidazole and FeC13. The as-prepared Fe/N/C possesses a unique hollow-shell structure that contains a buffer zone allowing both water formation and vaporization, and also facilitates the mass transfer of gas- eous oxygen. This catalyst generated an oxygen reduction reaction activiW of 9.21 A/g in conjunc- tion with a peak power density of 0.71 W/cm2.
基金financial support from Zhejiang Province Basic Public Welfare Research Project(LGF19B070006)financial supports from National Natural Science Foundation of China(21922811,21878270,51702284,21961160742)+2 种基金Zhejiang Provincial Natural Science Foundation of China(LR19B060002)supported by the Fundamental Research Funds for the Central Universitiesthe Startup Foundation for Hundred-Talent Program of Zhejiang University.
文摘Atomically dispersed metal-nitrogen sites-anchored carbon materials have been developed as effective catalysts for CO2 electroreduction(CO2 ER),but they still suffer from the imprecisely control of type and coordination number of N atoms bonded with central metal.Herein,we develop a family of single metal atom bonded by N atoms anchored on carbons(SAs-M-N-C,M=Fe,Co,Ni,Cu)for CO2 ER,which composed of accurate pyrrole-type M-N4 structures with isolated metal atom coordinated by four pyrrolic N atoms.Benefitting from atomically coordinated environment and specific selectivity of M-N4 centers,SAs-Ni-N-C exhibits superior CO2 ER performance with onset potential of-0.3 V,CO Faradaic efficiency(F.E.) of 98.5%at-0.7 V,along with low Tafel slope of 115 mV dec-1 and superior stability of 50 h,exceeding all the previously reported M-N-C electrocatalysts for CO2-to-CO conversion.Experimental results manifest that the different intrinsic activities of M-N4 structures in SAs-M-N-C result in the corresponding sequence of Ni> Fe> Cu> Co for CO2 ER performance.An integrated Zn-CO2 battery with Zn foil and SAs-Ni-N-C is constructed to simultaneously achieve CO2-to-CO conversion and electric energy output,which delivers a peak power density of 1.4 mW cm-2 and maximum CO F.E.of 93.3%.
基金supported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2013152)the Doctoral Scientific Research Foundation of Yuncheng University(No.YQ-2014019)
文摘{[Cu_3(cis-DAM)_4(OH)_2]·12H_2O}_n 1 and [Ag_3(trans-DAM)_2(NO_3)]_n 2 with a flexible ligand N,NA-diacetic acid imidazolium(HDAM) were synthesized and characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the orthorhombic I222 space group with a = 12.033(2),b = 12.498(3),c = 14.963(3) A,V = 2250.4(8) A^3,Z = 8,C_7H_(13.5)N_2O_(7.5)Cu_(0.75),M_r = 293.35,D_c = 1.732 g·cm^-3,F(000) = 1210,GOF = 1.087,the final R(I 〉 2σ(I)) = 0.0521 and w R(all data) = 0.1386. Compound 2 crystallizes in the monoclinic C2/c space group with a = 21.601(4),b = 8.321(2),c = 13.589(3) A,β = 126.95(3)°,V = 1951.9(7) A^3,Z = 8,C_7H_7N_(2.5)O_(5.5)Ag_(1.5),M_r = 375.96,D_c = 2.559 g·cm^-3,F(000) = 1448,GOF = 1.017,R(I 〉 2σ(I)) = 0.0222 and w R(all data) = 0.0633. Compound 1 displays a novel 2D layer,consisting of a couple of left-helical chains with a pitch of 12.498(3) A formed by μ_3-cis-DAM~– ligands and Cu(1) ions,which are stabilized by hydrogen bonding interactions to give a 3D supramolecular framework. As for 2,Ag(1) ions are doubly bridged by trans-DAM~– and NO_3~– to form [Ag(1)_2O_4] chains,which are further connected by Ag(2) and trans-DAM~– to build a 3D framework. Additionally,thermogravimetric analyses,FT-IR spectroscopy,UV-visible spectroscopy,and the fluorescent properties were discussed.
基金supported by the Natural Science Foundation of Henan Province and the Science Research Startup Foundation of Henan Normal University (NO. 0707)
文摘A potassium organic-inorganic hybrid complex {H2[K(PMo12O40)(CH3CN)3]- (dpdo)2(H2O)}n 1 (dpdo = 4,4'-bipyridine-N,N'-dioxide) with special channels for the chain-like assembly of decorated Keggin-type anions was synthesized and structurally characterized. The crystal structure was determined by single-crystal X-ray diffraction. The crystal is of orthorhombic, space group Cmcm with a = 20.5328(17), b = 16.8877(14), c = 16,1454(14) A, V = 5598.4(8) A^3, Z = 4, C26H29N7O45KMo12P, Mr= 2380.91, Dc = 2.825 g/cm^3,μ = 2.813 mm^-1, F(000) = 4528, the final R = 0.0324 and wR = 0.0880 for 2577 observed reflections with I 〉 2σ(I). Compound 1 exhibits a 3D network structure with large channels hosting decorated poly-anion chains as vips.
基金supported by the National Basic Research Program of China (2012CB114102)
文摘Methylation of the N6 position of adenine, termed N6-methyladenine, protects DNA from restriction endonucleases via the host-specific restriction-modification system. N6-methyladenine was discovered and has been well studied in bacteria. N6-adenine-specific DNA methyltransferase(N6AMT) is the main enzyme catalyzing the methylation of the adenine base and knowledge of this enzyme was mainly derived from work in prokaryotic models. However, large-scale gene discovery at the genome level in many model organisms indicated that the N6AMT gene also exists in eukaryotes, such as humans, mice, fruit flies and plants. Here, we cloned a N6AMT gene from Nilaparvata lugens(Nlu-N6AMT) and amplified its fulllength transcript. Then, we carried out a systematic investigation of N6AMT in 33 publically available insect genomes, indicating that all studied insects had N6AMT. Genomic structure analysis showed that insect N6AMT has short introns compared with the mammalian homologs. Domain and phylogenetic analysis indicated that insect N6AMT had a conserved N6-adenine Mlase domain that is specific to catalyze the adenine methylation. Nlu-N6AMT was highly expressed in the adult female. We knocked down Nlu-N6AMT by feeding ds RNA from the second instar nymph to adult female, inducing retard development of adult female. In all, we provide the first genome-wide analysis of N6AMT in insects and presented the experimental evidence that N6AMT might have important functions in reproductive development and ovary maturation.
文摘Two body centered tetragonal (bet) crystal structures of α'-Fe_(16)N_2 with x=0.25, z=0.3125 (Jack-1) and x=0.222, z=0.306 (Jack-2) respectively, were analyzed theoretically with EMS software package. The simulation of diffraction patterns indicates that both diffraction patterns of the same axis in these two structures obey bcc extinction rule. The conclusion is also obtained from the analyses of the diffracted waves. α'-Fe_(16)N_2 precipitates in the diffusion layer of ion-nitrided α-iron have been studied with transmission electron microscope (TEM). We have distinctly observed the electron diffraction patterns of α'-Fe_(16)N_2 in [100], [111], [110], [011], [210], [021], [311], [113], [331] and [133] zone axes with perfect symmetry, which indicate the parallel orientation relationship with α matrix:<001>α'//<001>α'// {100}.α'// {100}tα. The analyses of diffraction patterns, which obey bcc extinction rule, verify the bct structure of α'-Fe_(16)N_2 discovered by X-ray diffraction.
基金This research project was supported by the National Natural Science Foundation of China.
文摘The title compound has been synthesized and its crystal structure was determined by X-ray crystallographic method.The crystal is triclinic,space group P-1,with unit cell dimensions a=6.146 (5),b=8.473(6),c=14.383(5)(?);a=77.47(4),β=82.84(4),γ=69.00(8)°and Z=2.The results obtained reveal that the molecule of the title compound keeps a long conjugative system in- volving C=C double bond,cyclopropane ring,carbonyl group and isoxazolinone ring and adopts a low energy conformation including s-trans of C=C double bond,s-cis of carbonyl group with respect to the three-membered ring and like-s-trans of carbonyl group with the carbonyl group within the heterocyclic moiety.
基金supported by the National Natural Science Foundation of China(Nos.11964017,51972157,11864022,and 51662028)the Natural Science Foundation of Jiangxi Province(No.20192ACB21017)。
文摘The resistive switching(RS)mechanism of hybrid organic–inorganic perovskites has not been clearly understood until now.A switchable diode-like RS behavior in MAPbBr3 single crystals using Au(or Pt)symmetric electrodes is reported.Both the high resistance state(HRS)and low resistance state(LRS)are electrode-area dependent and light responsive.We propose an electric-fielddriven inner p–n junction accompanied by a trap-controlled space-charge-limited conduction(SCLC)conduction mechanism to explain this switchable diode-like RS behavior in MAPbBr_(3) single crystals.
基金supported by the National Natural Science Foundation of China(No.51371049)the Natural Science Foundation of Liaoning Province(No.20102173)
文摘As the era of nanoelectronics is dawning,CNT(carbon nanotube),a one-dimensional nano material with outstanding properties and performances,has aroused wide attention.In order to study its optical and electrical properties,this paper has researched the influence of tension-twisting deformation,defects,and mixed type on the electronic structure and optical properties of the armchair carbon nanotube superlattices doped cyclic alternately with B and N by using the first-principle method.Our findings show that if tension-twisting deformation is conducted,then the geometric structure,bond length,binding energy,band gap and optical properties of B,N doped carbon nanotube superlattices with defects and mixed type will be influenced.As the degree of exerted tension-twisting deformation increases,B,N doped carbon nanotube superlattices become less stable,and B,N doped carbon nanotube superlattices with defects are more stable than that with exerted tension-twisting deformations.Proper tension-twisting deformation can adjust the energy gap of the system;defects can only reduce the energy gap,enhancing the system metallicity;while the mixed type of 5%tension,twisting angle of 15° and atomic defects will significantly increase the energy gap of the system.From the perspective of optical properties,doped carbon nanotubes may transform the system from metallicity into semi-conductivity.
基金R.D.(CSIR Award No:09/1001(0074)/2020-EMR-I)thanks Council of Scientific and Industrial Research(CSIR)for the financial assistance through Research Associates(CSIR-RA)programme.
文摘Organometallic perovskite is a new generation photovoltaic material with exemplary properties such as high absorption co-efficient,optimal bandgap,high defect tolerance factor and long carrier diffusion length.However,suitable electrodes and charge transport materials are required to fulfill photovoltaic processes where interfaces between hole transport material/perovskite and perovskite/electron transport material are affected by phenomena of charge carrier separation,transportation,collection by the interfaces and band alignment.Based on recent available literature and several strategies for minimizing the recombination of charge carriers at the interfaces,this review addresses the properties of hole transport materials,relevant working mechanisms,and the interface engineering of perovskite solar cell(PSC)device architecture,which also provides significant insights to design and development of PSC devices with high efficiency.